Large deviation principle in one-dimensional dynamics

We study the dynamics of smooth interval maps with non-flat critical points. For every such a map that is topologically exact, we establish the full (level-2) Large Deviation Principle for empirical means. In particular, the Large Deviation Principle holds for every non-renormalizable quadratic map....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inventiones mathematicae 2019-12, Vol.218 (3), p.853-888
Hauptverfasser: Chung, Yong Moo, Rivera-Letelier, Juan, Takahasi, Hiroki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the dynamics of smooth interval maps with non-flat critical points. For every such a map that is topologically exact, we establish the full (level-2) Large Deviation Principle for empirical means. In particular, the Large Deviation Principle holds for every non-renormalizable quadratic map. This includes the maps without physical measure found by Hofbauer and Keller, and challenges the widely-shared view of the Large Deviation Principle as a refinement of laws of large numbers.
ISSN:0020-9910
1432-1297
DOI:10.1007/s00222-019-00899-w