Opportunistic sampling-based active visual SLAM for underwater inspection
This paper reports on an active SLAM framework for performing large-scale inspections with an underwater robot. We propose a path planning algorithm integrated with visual SLAM that plans loop-closure paths in order to decrease navigation uncertainty. While loop-closing revisit actions bound the rob...
Gespeichert in:
Veröffentlicht in: | Autonomous robots 2016-10, Vol.40 (7), p.1245-1265 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper reports on an active SLAM framework for performing large-scale inspections with an underwater robot. We propose a path planning algorithm integrated with visual SLAM that plans loop-closure paths in order to decrease navigation uncertainty. While loop-closing revisit actions bound the robot’s uncertainty, they also lead to redundant area coverage and increased path length. Our proposed opportunistic framework leverages sampling-based techniques and information filtering to plan revisit paths that are coverage efficient. We employ Gaussian process regression for modeling the prediction of camera registrations and use a two-step optimization procedure for selecting revisit actions. We show that the proposed method offers many benefits over existing solutions and good performance for bounding navigation uncertainty in long-term autonomous operations with hybrid simulation experiments and real-world field trials performed by an underwater inspection robot. |
---|---|
ISSN: | 0929-5593 1573-7527 |
DOI: | 10.1007/s10514-016-9597-6 |