Correlating low-temperature hydrogenation activity of Co/Pt(111) bimetallic surfaces to supported Co/Pt/γ-Al2O3 catalysts
The low-temperature self-hydrogenation (disproportionation) of cyclohexene was used as a probe reaction to correlate the reactivity of Co/Pt(111) bimetallic surfaces with supported Co/Pt/γ-Al2O3 catalysts. Temperature-programmed desorption (TPD) experiments show that cyclohexene undergoes self-hydro...
Gespeichert in:
Veröffentlicht in: | Catalysis letters 2005-12, Vol.105 (3-4), p.233-238 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The low-temperature self-hydrogenation (disproportionation) of cyclohexene was used as a probe reaction to correlate the reactivity of Co/Pt(111) bimetallic surfaces with supported Co/Pt/γ-Al2O3 catalysts. Temperature-programmed desorption (TPD) experiments show that cyclohexene undergoes self-hydrogenation on the ~1 ML Co/Pt(111) surface at ~219 K, which does not occur on either pure Pt(111) or a thick Co film on Pt(111). Supported catalysts with a 1:1 atomic ratio of Co:Pt were synthesized on a high surface area γ-Al2O3 to verify the bimetallic effect on the self-hydrogenation of cyclohexene. EXAFS experiments confirmed the presence of Co–Pt bonds in the catalyst. Using FTIR in a batch reactor configuration, the bimetallic catalyst showed a higher activity toward the self-hydrogenation of cyclohexene at room temperature than either Pt/γ-Al2O3 or Co/γ-Al2O3 catalysts. The comparison of Co/Pt(111) and Co/Pt/γ-Al2O3 provided an excellent example of correlating the self-hydrogenation activity of cyclohexene on bimetallic model surfaces and supported catalysts. |
---|---|
ISSN: | 1011-372X 1572-879X |
DOI: | 10.1007/s10562-005-8696-3 |