Optimization of synthesis variables in the preparation of active sulfated zirconia catalysts
The synthesis of a series of sulfated zirconia catalysts was optimized using the isomerization of n-butane as a reaction probe. The normality of the H2SO4 solution used in the sulfation step was found to be the most important variable. A systematic change in the concentration of the H2SO4 solution s...
Gespeichert in:
Veröffentlicht in: | Catalysis letters 2005-05, Vol.101 (1-2), p.5-13 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The synthesis of a series of sulfated zirconia catalysts was optimized using the isomerization of n-butane as a reaction probe. The normality of the H2SO4 solution used in the sulfation step was found to be the most important variable. A systematic change in the concentration of the H2SO4 solution showed that the optimum acid concentration was 0.25 N. When a catalyst prepared with this acid concentration was used, the conversion of n-butane at 200 °C was 35% at 5 min t-o-s. This was close to the thermodynamic equilibrium value of 56% conversion. This maximum was coincident with a catalyst with the highest specific surface area. An increase in the concentration of the H2SO4 solution above 0.25 N resulted in a decrease in both surface area and zirconia crystallinity. XPS studies showed a linear relationship between the H2SO4 solution concentration and the surface sulfur concentration. Bulk concentrations were determined by elemental analysis. The surface area increased to a maximum for a H2SO4 concentration of 0.25 N, while the concentration of bulk sulfur continued to increase when the acid concentration was progressively increased to 2.00 N. The use of a mordenite trap in the reactant stream resulted in an increase in n-butane conversion and a decrease in the rate of catalyst deactivation. XPS studies showed that the sulfur was present as sulfate species and that the oxidation state was not affected by the reaction. |
---|---|
ISSN: | 1011-372X 1572-879X |
DOI: | 10.1007/s10562-005-3740-x |