Modeling subgrid-scale topographic effects on shallow marsh hydrodynamics and salinity transport
A 2D depth-integrated subgrid hydrodynamic model (FrehdC) is designed to simulate effects of subgrid-scale topography on flow and scalar transport in shallow coastal marshes using computationally-efficient grid cells that are coarser than many of the channelized paths through the marsh. The subgrid-...
Gespeichert in:
Veröffentlicht in: | Advances in water resources 2019-07, Vol.129, p.1-15 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A 2D depth-integrated subgrid hydrodynamic model (FrehdC) is designed to simulate effects of subgrid-scale topography on flow and scalar transport in shallow coastal marshes using computationally-efficient grid cells that are coarser than many of the channelized paths through the marsh. The subgrid-scale topography is parametrized into four depth-dependent variables (subgrid cell volume and three subgrid face areas) that characterize the high-resolution features of coarse grid cells. These variables are pre-stored in a table and embedded into the governing equations as model inputs to scale cell storage, mass and momentum fluxes across cell faces. A block-checking procedure is designed to automatically preserve high-resolution surface connectivity during grid-coarsening. By testing on both synthetic domain and real marshes, this new model is able to approximate fine-grid simulation results of surface elevation, inundation area, flow rate and salinity with less computational cost. |
---|---|
ISSN: | 0309-1708 1872-9657 |
DOI: | 10.1016/j.advwatres.2019.05.004 |