Outsmarting superbugs: bactericidal activity of nanostructured titanium surfaces against methicillin- and gentamicin-resistant Staphylococcus aureus ATCC 33592

The colonisation of biomaterial surfaces by pathogenic bacteria is a significant issue of concern, particularly in light of the rapid rise of antibiotic resistance. Current strategies are proving ineffective as multi-drug resistant pathogenic bacteria emerge. Recently, it was discovered that surface...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. B, Materials for biology and medicine Materials for biology and medicine, 2019, Vol.7 (28), p.4424-4431
Hauptverfasser: Wandiyanto, Jason V., Cheeseman, Samuel, Truong, Vi Khanh, Kobaisi, Mohammad Al, Bizet, Chantal, Juodkazis, Saulius, Thissen, Helmut, Crawford, Russell J., Ivanova, Elena P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The colonisation of biomaterial surfaces by pathogenic bacteria is a significant issue of concern, particularly in light of the rapid rise of antibiotic resistance. Current strategies are proving ineffective as multi-drug resistant pathogenic bacteria emerge. Recently, it was discovered that surfaces with nanoscale features are capable of physically rupturing bacteria and hence displaying mechano-bactericidal activity. In this study, we investigated the interactions between methicillin- and gentamicin-susceptible and -resistant Staphylococcus aureus strains and nanostructured titanium surfaces, fabricated using a hydrothermal etching process. The nanostructured titanium surfaces proved to be equally effective and highly bactericidal against both the susceptible and resistant S. aureus strains, with killing efficiencies of 80.7% ± 12.0 and 86.8% ± 11.6, respectively. The mechano-bactericidal activity of these nanostructured titanium surfaces offers an innovative solution to establish medical device surfaces with antimicrobial activity in the context of increasing antibiotic resistance.
ISSN:2050-750X
2050-7518
DOI:10.1039/C9TB00102F