Spherically symmetric random permutations
We consider random permutations which are spherically symmetric with respect to a metric on the symmetric group Sn and are consistent as n varies. The extreme infinitely spherically symmetric permutation‐valued processes are identified for the Hamming, Kendall‐tau and Cayley metrics. The proofs in a...
Gespeichert in:
Veröffentlicht in: | Random structures & algorithms 2019-09, Vol.55 (2), p.342-355 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 355 |
---|---|
container_issue | 2 |
container_start_page | 342 |
container_title | Random structures & algorithms |
container_volume | 55 |
creator | Gnedin, Alexander Gorin, Vadim |
description | We consider random permutations which are spherically symmetric with respect to a metric on the symmetric group Sn and are consistent as n varies. The extreme infinitely spherically symmetric permutation‐valued processes are identified for the Hamming, Kendall‐tau and Cayley metrics. The proofs in all three cases are based on a unified approach through stochastic monotonicity. |
doi_str_mv | 10.1002/rsa.20847 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2258508964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2258508964</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2927-e4366f55dc627b1ac58250fdde8062d0def6b97754161fc9045ce721151d5f0a3</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsFYP_oOCpx7Szk72K8dStAoFwep52e4HpiRN3E2R_HtT49XTzMAz7wsPIfcUFhQAlzGZBYJi8oJMKBQqQ0bV5XlnmBUqx2tyk9IBAGSO-YTMd-2nj6U1VdXPUl_XvhuuWTRH19Sz1sf61JmubI7pllwFUyV_9zen5OPp8X39nG1fNy_r1TazWKDMPMuFCJw7K1DuqbFcIYfgnFcg0IHzQewLKTmjggZbAOPWS6SUU8cDmHxKHsbcNjZfJ586fWhO8ThUakSuOKhCsIGaj5SNTUrRB93Gsjax1xT02YQeTOhfEwO7HNnvsvL9_6B-263Gjx93SF6L</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2258508964</pqid></control><display><type>article</type><title>Spherically symmetric random permutations</title><source>Access via Wiley Online Library</source><creator>Gnedin, Alexander ; Gorin, Vadim</creator><creatorcontrib>Gnedin, Alexander ; Gorin, Vadim</creatorcontrib><description>We consider random permutations which are spherically symmetric with respect to a metric on the symmetric group Sn and are consistent as n varies. The extreme infinitely spherically symmetric permutation‐valued processes are identified for the Hamming, Kendall‐tau and Cayley metrics. The proofs in all three cases are based on a unified approach through stochastic monotonicity.</description><identifier>ISSN: 1042-9832</identifier><identifier>EISSN: 1098-2418</identifier><identifier>DOI: 10.1002/rsa.20847</identifier><language>eng</language><publisher>New York: John Wiley & Sons, Inc</publisher><subject>Martin boundary ; Permutations ; random permutations ; spherical symmetry</subject><ispartof>Random structures & algorithms, 2019-09, Vol.55 (2), p.342-355</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2927-e4366f55dc627b1ac58250fdde8062d0def6b97754161fc9045ce721151d5f0a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frsa.20847$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frsa.20847$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Gnedin, Alexander</creatorcontrib><creatorcontrib>Gorin, Vadim</creatorcontrib><title>Spherically symmetric random permutations</title><title>Random structures & algorithms</title><description>We consider random permutations which are spherically symmetric with respect to a metric on the symmetric group Sn and are consistent as n varies. The extreme infinitely spherically symmetric permutation‐valued processes are identified for the Hamming, Kendall‐tau and Cayley metrics. The proofs in all three cases are based on a unified approach through stochastic monotonicity.</description><subject>Martin boundary</subject><subject>Permutations</subject><subject>random permutations</subject><subject>spherical symmetry</subject><issn>1042-9832</issn><issn>1098-2418</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1Lw0AQhhdRsFYP_oOCpx7Szk72K8dStAoFwep52e4HpiRN3E2R_HtT49XTzMAz7wsPIfcUFhQAlzGZBYJi8oJMKBQqQ0bV5XlnmBUqx2tyk9IBAGSO-YTMd-2nj6U1VdXPUl_XvhuuWTRH19Sz1sf61JmubI7pllwFUyV_9zen5OPp8X39nG1fNy_r1TazWKDMPMuFCJw7K1DuqbFcIYfgnFcg0IHzQewLKTmjggZbAOPWS6SUU8cDmHxKHsbcNjZfJ586fWhO8ThUakSuOKhCsIGaj5SNTUrRB93Gsjax1xT02YQeTOhfEwO7HNnvsvL9_6B-263Gjx93SF6L</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Gnedin, Alexander</creator><creator>Gorin, Vadim</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201909</creationdate><title>Spherically symmetric random permutations</title><author>Gnedin, Alexander ; Gorin, Vadim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2927-e4366f55dc627b1ac58250fdde8062d0def6b97754161fc9045ce721151d5f0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Martin boundary</topic><topic>Permutations</topic><topic>random permutations</topic><topic>spherical symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gnedin, Alexander</creatorcontrib><creatorcontrib>Gorin, Vadim</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Random structures & algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gnedin, Alexander</au><au>Gorin, Vadim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spherically symmetric random permutations</atitle><jtitle>Random structures & algorithms</jtitle><date>2019-09</date><risdate>2019</risdate><volume>55</volume><issue>2</issue><spage>342</spage><epage>355</epage><pages>342-355</pages><issn>1042-9832</issn><eissn>1098-2418</eissn><abstract>We consider random permutations which are spherically symmetric with respect to a metric on the symmetric group Sn and are consistent as n varies. The extreme infinitely spherically symmetric permutation‐valued processes are identified for the Hamming, Kendall‐tau and Cayley metrics. The proofs in all three cases are based on a unified approach through stochastic monotonicity.</abstract><cop>New York</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/rsa.20847</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1042-9832 |
ispartof | Random structures & algorithms, 2019-09, Vol.55 (2), p.342-355 |
issn | 1042-9832 1098-2418 |
language | eng |
recordid | cdi_proquest_journals_2258508964 |
source | Access via Wiley Online Library |
subjects | Martin boundary Permutations random permutations spherical symmetry |
title | Spherically symmetric random permutations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T21%3A03%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spherically%20symmetric%20random%20permutations&rft.jtitle=Random%20structures%20&%20algorithms&rft.au=Gnedin,%20Alexander&rft.date=2019-09&rft.volume=55&rft.issue=2&rft.spage=342&rft.epage=355&rft.pages=342-355&rft.issn=1042-9832&rft.eissn=1098-2418&rft_id=info:doi/10.1002/rsa.20847&rft_dat=%3Cproquest_cross%3E2258508964%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2258508964&rft_id=info:pmid/&rfr_iscdi=true |