Spherically symmetric random permutations

We consider random permutations which are spherically symmetric with respect to a metric on the symmetric group Sn and are consistent as n varies. The extreme infinitely spherically symmetric permutation‐valued processes are identified for the Hamming, Kendall‐tau and Cayley metrics. The proofs in a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Random structures & algorithms 2019-09, Vol.55 (2), p.342-355
Hauptverfasser: Gnedin, Alexander, Gorin, Vadim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider random permutations which are spherically symmetric with respect to a metric on the symmetric group Sn and are consistent as n varies. The extreme infinitely spherically symmetric permutation‐valued processes are identified for the Hamming, Kendall‐tau and Cayley metrics. The proofs in all three cases are based on a unified approach through stochastic monotonicity.
ISSN:1042-9832
1098-2418
DOI:10.1002/rsa.20847