Spherically symmetric random permutations
We consider random permutations which are spherically symmetric with respect to a metric on the symmetric group Sn and are consistent as n varies. The extreme infinitely spherically symmetric permutation‐valued processes are identified for the Hamming, Kendall‐tau and Cayley metrics. The proofs in a...
Gespeichert in:
Veröffentlicht in: | Random structures & algorithms 2019-09, Vol.55 (2), p.342-355 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider random permutations which are spherically symmetric with respect to a metric on the symmetric group Sn and are consistent as n varies. The extreme infinitely spherically symmetric permutation‐valued processes are identified for the Hamming, Kendall‐tau and Cayley metrics. The proofs in all three cases are based on a unified approach through stochastic monotonicity. |
---|---|
ISSN: | 1042-9832 1098-2418 |
DOI: | 10.1002/rsa.20847 |