Optimisation of thin-walled hybrid vertical struts for crashworthy aircraft designs
This research concerns the crashworthiness enhancement of a model of a Boeing 737-200 fuselage section. Using a validated numerical specimen, four thin-walled crushable hybrid energy absorbers are added to the aircraft to work as vertical struts. The absorbers are composed of a hollow aluminium tube...
Gespeichert in:
Veröffentlicht in: | Structural and multidisciplinary optimization 2020, Vol.61 (1), p.141-158 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This research concerns the crashworthiness enhancement of a model of a Boeing 737-200 fuselage section. Using a validated numerical specimen, four thin-walled crushable hybrid energy absorbers are added to the aircraft to work as vertical struts. The absorbers are composed of a hollow aluminium tube, a star-shaped glass fibre–reinforced polymer inner matrix and foam extrusions. The absorbers—with variable tube edge and thickness, composite thickness and core height—are single- and multi-objectively optimised. Surrogate models and genetic algorithms are used for the minimisation of acceleration loads, injury levels and the strut’s weight. Results yield a more efficient frames’ collapse evolution with plastic dissipation increased by over 50%. Consequently, acceleration peaks are up to 50% lower at the two measured locations while maintaining low mass values. Injury levels were also reduced from severe to moderate according to an Eiband diagram. |
---|---|
ISSN: | 1615-147X 1615-1488 |
DOI: | 10.1007/s00158-019-02350-3 |