Pore-Scale Modeling of Viscous Flow and Induced Forces in Dense Sphere Packings
We propose a method for effectively upscaling incompressible viscous flow in large random polydispersed sphere packings: the emphasis of this method is on the determination of the forces applied on the solid particles by the fluid. Pore bodies and their connections are defined locally through a regu...
Gespeichert in:
Veröffentlicht in: | Transport in porous media 2012-09, Vol.94 (2), p.595-615 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose a method for effectively upscaling incompressible viscous flow in large random polydispersed sphere packings: the emphasis of this method is on the determination of the forces applied on the solid particles by the fluid. Pore bodies and their connections are defined locally through a regular Delaunay triangulation of the packings. Viscous flow equations are upscaled at the pore level, and approximated with a finite volume numerical scheme. We compare numerical simulations of the proposed method to detailed finite element simulations of the Stokes equations for assemblies of 8–200 spheres. A good agreement is found both in terms of forces exerted on the solid particles and effective permeability coefficients. |
---|---|
ISSN: | 0169-3913 1573-1634 |
DOI: | 10.1007/s11242-012-0057-2 |