Twin formation from a twin boundary in Mg during in-situ nanomechanical testing
An important fundamental question regarding deformation twinning is whether it is possible for twins to nucleate at boundaries or interfaces when specific stress fields are present. A corollary that follows from this question is: if this is indeed possible, what determines the proper stress field an...
Gespeichert in:
Veröffentlicht in: | Materials Science and Engineering. A. Structural Materials: Properties, Microstructure and Processing Microstructure and Processing, 2019-06, Vol.759, p.142-153 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An important fundamental question regarding deformation twinning is whether it is possible for twins to nucleate at boundaries or interfaces when specific stress fields are present. A corollary that follows from this question is: if this is indeed possible, what determines the proper stress field and how does it occur at the nanoscale? Here, we demonstrate the application of an in-situ nanoindentation approach to confine and dynamically capture the stages in the formation of a deformation twin at an internal twin boundary in single crystal Mg. We observe the formation of contraction twin embryos at the pre-existing extension twin boundary, and the subsequent propagation of the twin embryos into the crystal. We reveal an intermediate step, involving the coalescence of tiny embryos into a larger embryo before the nucleus emanates into the crystal. De-twinnning of the twin embryos is captured during unloading and shown to leave a remnant nanosized twin ( |
---|---|
ISSN: | 0921-5093 1873-4936 |
DOI: | 10.1016/j.msea.2019.04.117 |