The Inequality of Milne and Its Converse, III
The discrete version of Milne's inequality and its converse states that ( * ) ∑ j = 1 n w j 1 - p j 2 ≤ ∑ j = 1 n w j 1 - p j ∑ j = 1 n w j 1 - p j ≤ ( ∑ j = 1 n w j 1 - p j 2 ) 2 is valid for all wj > 0 (j = 1…, n) with w1+ … +wn = 1 and p j ∈ ( - 1 , 1 ) ( j = 1 , … , n ) . We pres...
Gespeichert in:
Veröffentlicht in: | Real analysis exchange 2019-01, Vol.44 (1), p.89-100 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The discrete version of Milne's inequality and its converse states that
(
*
)
∑
j
=
1
n
w
j
1
-
p
j
2
≤
∑
j
=
1
n
w
j
1
-
p
j
∑
j
=
1
n
w
j
1
-
p
j
≤
(
∑
j
=
1
n
w
j
1
-
p
j
2
)
2
is valid for all wj
> 0 (j = 1…,
n) with w1+ … +wn
=
1 and
p
j
∈
(
-
1
,
1
)
(
j
=
1
,
…
,
n
)
. We present
new upper and lower bounds for the product Σw/(1 –
p) Σ w/(1 + p). In
particular, we obtain an improvement of the right-hand side of (*). Moreover, we
prove a matrix analogue of our double-inequality.
Mathematical Reviews subject classification: Primary: 26D15; Secondary: 15A45
Key words: Milne's inequality, matrix inequalities |
---|---|
ISSN: | 0147-1937 1930-1219 |
DOI: | 10.14321/realanalexch.44.1.0089 |