The Inequality of Milne and Its Converse, III

The discrete version of Milne's inequality and its converse states that ( * )       ∑ j = 1 n w j 1 - p j 2 ≤ ∑ j = 1 n w j 1 - p j ∑ j = 1 n w j 1 - p j ≤ ( ∑ j = 1 n w j 1 - p j 2 ) 2 is valid for all wj > 0 (j = 1…, n) with w1+ … +wn = 1 and p j ∈ ( - 1 , 1 )   ( j = 1 , … , n ) . We pres...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Real analysis exchange 2019-01, Vol.44 (1), p.89-100
Hauptverfasser: Alzer, Horst, Kovačec, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The discrete version of Milne's inequality and its converse states that ( * )       ∑ j = 1 n w j 1 - p j 2 ≤ ∑ j = 1 n w j 1 - p j ∑ j = 1 n w j 1 - p j ≤ ( ∑ j = 1 n w j 1 - p j 2 ) 2 is valid for all wj > 0 (j = 1…, n) with w1+ … +wn = 1 and p j ∈ ( - 1 , 1 )   ( j = 1 , … , n ) . We present new upper and lower bounds for the product Σw/(1 – p) Σ w/(1 + p). In particular, we obtain an improvement of the right-hand side of (*). Moreover, we prove a matrix analogue of our double-inequality. Mathematical Reviews subject classification: Primary: 26D15; Secondary: 15A45 Key words: Milne's inequality, matrix inequalities
ISSN:0147-1937
1930-1219
DOI:10.14321/realanalexch.44.1.0089