Robustness of delocalization to the inclusion of soft constraints in long-range random models
Motivated by the constrained many-body dynamics, the stability of the localization-delocalization properties to the inclusion of soft constraints is addressed in random matrix models. These constraints are modeled by correlations in long-ranged hopping with the Pearson correlation coefficient differ...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2019-06, Vol.99 (22), p.1, Article 224208 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Motivated by the constrained many-body dynamics, the stability of the localization-delocalization properties to the inclusion of soft constraints is addressed in random matrix models. These constraints are modeled by correlations in long-ranged hopping with the Pearson correlation coefficient different from zero or unity. Counterintuitive robustness of delocalized phases, both ergodic and (multi)fractal, in these models, is numerically observed and confirmed by the analytical calculations. First, the matrix inversion trick is used to uncover the origin of such robustness. Next, to characterize delocalized phases, a method of eigenstate calculation, sensitive to correlations in long-ranged hopping terms, is developed for random matrix models and approved by numerical calculations and the previous analytical ansatz. The effect of the robustness of states in the bulk of the spectrum to the inclusion of soft constraints is generally discussed for single-particle and many-body systems. |
---|---|
ISSN: | 2469-9950 2469-9969 |
DOI: | 10.1103/PhysRevB.99.224208 |