Removing Type II Singularities Off the Axis for the Three Dimensional Axisymmetric Euler Equations

In this paper we obtain new local blow-up criterion for smooth axisymmetric solutions to the three dimensional incompressible Euler equation. If the vorticity satisfies ∫ 0 t ∗ ( t ∗ - t ) ‖ ω ( t ) ‖ L ∞ ( B ( x ∗ , R 0 ) ) d t < + ∞ for a ball B ( x ∗ , R 0 ) away from the axis of symmetry, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive for rational mechanics and analysis 2019-12, Vol.234 (3), p.1041-1089
Hauptverfasser: Chae, Dongho, Wolf, Jörg
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we obtain new local blow-up criterion for smooth axisymmetric solutions to the three dimensional incompressible Euler equation. If the vorticity satisfies ∫ 0 t ∗ ( t ∗ - t ) ‖ ω ( t ) ‖ L ∞ ( B ( x ∗ , R 0 ) ) d t < + ∞ for a ball B ( x ∗ , R 0 ) away from the axis of symmetry, then there exists no singularity at t = t ∗ in the torus T ( x ∗ , R ) generated by rotation of the ball B ( x ∗ , R 0 ) around the axis. This implies that possible singularity at t = t ∗ in the torus T ( x ∗ , R ) is excluded if the vorticity satisfies the blow-up rate ‖ ω ( t ) ‖ L ∞ ( T ( x ∗ , R ) ) = O 1 ( t ∗ - t ) γ as t → t ∗ , where γ < 2 , and the torus T ( x ∗ , R ) does not touch the axis.
ISSN:0003-9527
1432-0673
DOI:10.1007/s00205-019-01407-3