Removing Type II Singularities Off the Axis for the Three Dimensional Axisymmetric Euler Equations
In this paper we obtain new local blow-up criterion for smooth axisymmetric solutions to the three dimensional incompressible Euler equation. If the vorticity satisfies ∫ 0 t ∗ ( t ∗ - t ) ‖ ω ( t ) ‖ L ∞ ( B ( x ∗ , R 0 ) ) d t < + ∞ for a ball B ( x ∗ , R 0 ) away from the axis of symmetry, the...
Gespeichert in:
Veröffentlicht in: | Archive for rational mechanics and analysis 2019-12, Vol.234 (3), p.1041-1089 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we obtain new local blow-up criterion for smooth axisymmetric solutions to the three dimensional incompressible Euler equation. If the vorticity satisfies
∫
0
t
∗
(
t
∗
-
t
)
‖
ω
(
t
)
‖
L
∞
(
B
(
x
∗
,
R
0
)
)
d
t
<
+
∞
for a ball
B
(
x
∗
,
R
0
)
away from the axis of symmetry, then there exists no singularity at
t
=
t
∗
in the torus
T
(
x
∗
,
R
)
generated by rotation of the ball
B
(
x
∗
,
R
0
)
around the axis. This implies that possible singularity at
t
=
t
∗
in the torus
T
(
x
∗
,
R
)
is excluded if the vorticity satisfies the blow-up rate
‖
ω
(
t
)
‖
L
∞
(
T
(
x
∗
,
R
)
)
=
O
1
(
t
∗
-
t
)
γ
as
t
→
t
∗
, where
γ
<
2
, and the torus
T
(
x
∗
,
R
)
does not touch the axis. |
---|---|
ISSN: | 0003-9527 1432-0673 |
DOI: | 10.1007/s00205-019-01407-3 |