Strong amenability and the infinite conjugacy class property

A group is said to be strongly amenable if each of its proximal topological actions has a fixed point. We show that a finitely generated group is strongly amenable if and only if it is virtually nilpotent. More generally, a countable discrete group is strongly amenable if and only if none of its quo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inventiones mathematicae 2019-12, Vol.218 (3), p.833-851
Hauptverfasser: Frisch, Joshua, Tamuz, Omer, Vahidi Ferdowsi, Pooya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A group is said to be strongly amenable if each of its proximal topological actions has a fixed point. We show that a finitely generated group is strongly amenable if and only if it is virtually nilpotent. More generally, a countable discrete group is strongly amenable if and only if none of its quotients have the infinite conjugacy class property.
ISSN:0020-9910
1432-1297
DOI:10.1007/s00222-019-00896-z