Strong amenability and the infinite conjugacy class property
A group is said to be strongly amenable if each of its proximal topological actions has a fixed point. We show that a finitely generated group is strongly amenable if and only if it is virtually nilpotent. More generally, a countable discrete group is strongly amenable if and only if none of its quo...
Gespeichert in:
Veröffentlicht in: | Inventiones mathematicae 2019-12, Vol.218 (3), p.833-851 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A group is said to be strongly amenable if each of its proximal topological actions has a fixed point. We show that a finitely generated group is strongly amenable if and only if it is virtually nilpotent. More generally, a countable discrete group is strongly amenable if and only if none of its quotients have the infinite conjugacy class property. |
---|---|
ISSN: | 0020-9910 1432-1297 |
DOI: | 10.1007/s00222-019-00896-z |