Efficient Constant-Round Multi-party Computation Combining BMR and SPDZ
Recently, there has been huge progress in the field of concretely efficient secure computation, even while providing security in the presence of malicious adversaries . This is especially the case in the two-party setting, where constant-round protocols exist that remain fast even over slow networks...
Gespeichert in:
Veröffentlicht in: | Journal of cryptology 2019-07, Vol.32 (3), p.1026-1069 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1069 |
---|---|
container_issue | 3 |
container_start_page | 1026 |
container_title | Journal of cryptology |
container_volume | 32 |
creator | Lindell, Yehuda Pinkas, Benny Smart, Nigel P. Yanai, Avishay |
description | Recently, there has been huge progress in the field of concretely efficient secure computation, even while providing security in the presence of
malicious adversaries
. This is especially the case in the two-party setting, where constant-round protocols exist that remain fast even over slow networks. However, in the multi-party setting, all concretely efficient fully secure protocols, such as SPDZ, require many rounds of communication. In this paper, we present a
constant-round
multi-party secure computation protocol that is fully secure in the presence of malicious adversaries and for any number of corrupted parties. Our construction is based on the constant-round protocol of Beaver et al. (the BMR protocol) and is the first version of that protocol that is
concretely
efficient for the dishonest majority case. Our protocol includes an online phase that is extremely fast and mainly consists of each party locally evaluating a garbled circuit. For the offline phase, we present both a generic construction (using any underlying MPC protocol) and a highly efficient instantiation based on the SPDZ protocol. Our estimates show the protocol to be considerably more efficient than previous fully secure multi-party protocols. |
doi_str_mv | 10.1007/s00145-019-09322-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2256777690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2256777690</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-bbe6fade920537d6fe003b226e1aafb39ddb94d322039cce863c2bc7a49e7a6d3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wisTb4kdj1EkpbkFqBCmzYWH6lStU6wXYW_XtcgsSO1Yxmzr2juQBcY3SLEeJ3ESFcVhBhAZGghEByAka4pARiyienYJSnFBIu0Dm4iHGbcV5xOgKLWV03pnE-FdPWx6R8guu297ZY9bvUwE6FdMirfdcnlZrWH3vd-MZviofVulCZfHt9_LwEZ7XaRXf1W8fgYz57nz7B5cvieXq_hIYymqDWjtXKOkFQRblltUOIakKYw0rVmgprtSht_gBRYYybMGqINlyVwnHFLB2Dm8G3C-1X72KS27YPPp-UhFSMc84EyhQZKBPaGIOrZReavQoHiZE8BiaHwGQOTP4EJkkW0UEUM-w3LvxZ_6P6BkqdbcI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2256777690</pqid></control><display><type>article</type><title>Efficient Constant-Round Multi-party Computation Combining BMR and SPDZ</title><source>SpringerNature Journals</source><creator>Lindell, Yehuda ; Pinkas, Benny ; Smart, Nigel P. ; Yanai, Avishay</creator><creatorcontrib>Lindell, Yehuda ; Pinkas, Benny ; Smart, Nigel P. ; Yanai, Avishay</creatorcontrib><description>Recently, there has been huge progress in the field of concretely efficient secure computation, even while providing security in the presence of
malicious adversaries
. This is especially the case in the two-party setting, where constant-round protocols exist that remain fast even over slow networks. However, in the multi-party setting, all concretely efficient fully secure protocols, such as SPDZ, require many rounds of communication. In this paper, we present a
constant-round
multi-party secure computation protocol that is fully secure in the presence of malicious adversaries and for any number of corrupted parties. Our construction is based on the constant-round protocol of Beaver et al. (the BMR protocol) and is the first version of that protocol that is
concretely
efficient for the dishonest majority case. Our protocol includes an online phase that is extremely fast and mainly consists of each party locally evaluating a garbled circuit. For the offline phase, we present both a generic construction (using any underlying MPC protocol) and a highly efficient instantiation based on the SPDZ protocol. Our estimates show the protocol to be considerably more efficient than previous fully secure multi-party protocols.</description><identifier>ISSN: 0933-2790</identifier><identifier>EISSN: 1432-1378</identifier><identifier>DOI: 10.1007/s00145-019-09322-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Circuits ; Coding and Information Theory ; Combinatorics ; Communications Engineering ; Computational efficiency ; Computational Mathematics and Numerical Analysis ; Computer Science ; Networks ; Probability Theory and Stochastic Processes ; Protocol</subject><ispartof>Journal of cryptology, 2019-07, Vol.32 (3), p.1026-1069</ispartof><rights>International Association for Cryptologic Research 2019</rights><rights>International Association for Cryptologic Research 2019.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-bbe6fade920537d6fe003b226e1aafb39ddb94d322039cce863c2bc7a49e7a6d3</citedby><cites>FETCH-LOGICAL-c363t-bbe6fade920537d6fe003b226e1aafb39ddb94d322039cce863c2bc7a49e7a6d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00145-019-09322-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00145-019-09322-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Lindell, Yehuda</creatorcontrib><creatorcontrib>Pinkas, Benny</creatorcontrib><creatorcontrib>Smart, Nigel P.</creatorcontrib><creatorcontrib>Yanai, Avishay</creatorcontrib><title>Efficient Constant-Round Multi-party Computation Combining BMR and SPDZ</title><title>Journal of cryptology</title><addtitle>J Cryptol</addtitle><description>Recently, there has been huge progress in the field of concretely efficient secure computation, even while providing security in the presence of
malicious adversaries
. This is especially the case in the two-party setting, where constant-round protocols exist that remain fast even over slow networks. However, in the multi-party setting, all concretely efficient fully secure protocols, such as SPDZ, require many rounds of communication. In this paper, we present a
constant-round
multi-party secure computation protocol that is fully secure in the presence of malicious adversaries and for any number of corrupted parties. Our construction is based on the constant-round protocol of Beaver et al. (the BMR protocol) and is the first version of that protocol that is
concretely
efficient for the dishonest majority case. Our protocol includes an online phase that is extremely fast and mainly consists of each party locally evaluating a garbled circuit. For the offline phase, we present both a generic construction (using any underlying MPC protocol) and a highly efficient instantiation based on the SPDZ protocol. Our estimates show the protocol to be considerably more efficient than previous fully secure multi-party protocols.</description><subject>Circuits</subject><subject>Coding and Information Theory</subject><subject>Combinatorics</subject><subject>Communications Engineering</subject><subject>Computational efficiency</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Computer Science</subject><subject>Networks</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Protocol</subject><issn>0933-2790</issn><issn>1432-1378</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6wisTb4kdj1EkpbkFqBCmzYWH6lStU6wXYW_XtcgsSO1Yxmzr2juQBcY3SLEeJ3ESFcVhBhAZGghEByAka4pARiyienYJSnFBIu0Dm4iHGbcV5xOgKLWV03pnE-FdPWx6R8guu297ZY9bvUwE6FdMirfdcnlZrWH3vd-MZviofVulCZfHt9_LwEZ7XaRXf1W8fgYz57nz7B5cvieXq_hIYymqDWjtXKOkFQRblltUOIakKYw0rVmgprtSht_gBRYYybMGqINlyVwnHFLB2Dm8G3C-1X72KS27YPPp-UhFSMc84EyhQZKBPaGIOrZReavQoHiZE8BiaHwGQOTP4EJkkW0UEUM-w3LvxZ_6P6BkqdbcI</recordid><startdate>20190715</startdate><enddate>20190715</enddate><creator>Lindell, Yehuda</creator><creator>Pinkas, Benny</creator><creator>Smart, Nigel P.</creator><creator>Yanai, Avishay</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190715</creationdate><title>Efficient Constant-Round Multi-party Computation Combining BMR and SPDZ</title><author>Lindell, Yehuda ; Pinkas, Benny ; Smart, Nigel P. ; Yanai, Avishay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-bbe6fade920537d6fe003b226e1aafb39ddb94d322039cce863c2bc7a49e7a6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Circuits</topic><topic>Coding and Information Theory</topic><topic>Combinatorics</topic><topic>Communications Engineering</topic><topic>Computational efficiency</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Computer Science</topic><topic>Networks</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Protocol</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lindell, Yehuda</creatorcontrib><creatorcontrib>Pinkas, Benny</creatorcontrib><creatorcontrib>Smart, Nigel P.</creatorcontrib><creatorcontrib>Yanai, Avishay</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of cryptology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lindell, Yehuda</au><au>Pinkas, Benny</au><au>Smart, Nigel P.</au><au>Yanai, Avishay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Constant-Round Multi-party Computation Combining BMR and SPDZ</atitle><jtitle>Journal of cryptology</jtitle><stitle>J Cryptol</stitle><date>2019-07-15</date><risdate>2019</risdate><volume>32</volume><issue>3</issue><spage>1026</spage><epage>1069</epage><pages>1026-1069</pages><issn>0933-2790</issn><eissn>1432-1378</eissn><abstract>Recently, there has been huge progress in the field of concretely efficient secure computation, even while providing security in the presence of
malicious adversaries
. This is especially the case in the two-party setting, where constant-round protocols exist that remain fast even over slow networks. However, in the multi-party setting, all concretely efficient fully secure protocols, such as SPDZ, require many rounds of communication. In this paper, we present a
constant-round
multi-party secure computation protocol that is fully secure in the presence of malicious adversaries and for any number of corrupted parties. Our construction is based on the constant-round protocol of Beaver et al. (the BMR protocol) and is the first version of that protocol that is
concretely
efficient for the dishonest majority case. Our protocol includes an online phase that is extremely fast and mainly consists of each party locally evaluating a garbled circuit. For the offline phase, we present both a generic construction (using any underlying MPC protocol) and a highly efficient instantiation based on the SPDZ protocol. Our estimates show the protocol to be considerably more efficient than previous fully secure multi-party protocols.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00145-019-09322-2</doi><tpages>44</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0933-2790 |
ispartof | Journal of cryptology, 2019-07, Vol.32 (3), p.1026-1069 |
issn | 0933-2790 1432-1378 |
language | eng |
recordid | cdi_proquest_journals_2256777690 |
source | SpringerNature Journals |
subjects | Circuits Coding and Information Theory Combinatorics Communications Engineering Computational efficiency Computational Mathematics and Numerical Analysis Computer Science Networks Probability Theory and Stochastic Processes Protocol |
title | Efficient Constant-Round Multi-party Computation Combining BMR and SPDZ |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A26%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Constant-Round%20Multi-party%20Computation%20Combining%20BMR%20and%20SPDZ&rft.jtitle=Journal%20of%20cryptology&rft.au=Lindell,%20Yehuda&rft.date=2019-07-15&rft.volume=32&rft.issue=3&rft.spage=1026&rft.epage=1069&rft.pages=1026-1069&rft.issn=0933-2790&rft.eissn=1432-1378&rft_id=info:doi/10.1007/s00145-019-09322-2&rft_dat=%3Cproquest_cross%3E2256777690%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2256777690&rft_id=info:pmid/&rfr_iscdi=true |