Efficient Constant-Round Multi-party Computation Combining BMR and SPDZ

Recently, there has been huge progress in the field of concretely efficient secure computation, even while providing security in the presence of malicious adversaries . This is especially the case in the two-party setting, where constant-round protocols exist that remain fast even over slow networks...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cryptology 2019-07, Vol.32 (3), p.1026-1069
Hauptverfasser: Lindell, Yehuda, Pinkas, Benny, Smart, Nigel P., Yanai, Avishay
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1069
container_issue 3
container_start_page 1026
container_title Journal of cryptology
container_volume 32
creator Lindell, Yehuda
Pinkas, Benny
Smart, Nigel P.
Yanai, Avishay
description Recently, there has been huge progress in the field of concretely efficient secure computation, even while providing security in the presence of malicious adversaries . This is especially the case in the two-party setting, where constant-round protocols exist that remain fast even over slow networks. However, in the multi-party setting, all concretely efficient fully secure protocols, such as SPDZ, require many rounds of communication. In this paper, we present a constant-round multi-party secure computation protocol that is fully secure in the presence of malicious adversaries and for any number of corrupted parties. Our construction is based on the constant-round protocol of Beaver et al. (the BMR protocol) and is the first version of that protocol that is concretely efficient for the dishonest majority case. Our protocol includes an online phase that is extremely fast and mainly consists of each party locally evaluating a garbled circuit. For the offline phase, we present both a generic construction (using any underlying MPC protocol) and a highly efficient instantiation based on the SPDZ protocol. Our estimates show the protocol to be considerably more efficient than previous fully secure multi-party protocols.
doi_str_mv 10.1007/s00145-019-09322-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2256777690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2256777690</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-bbe6fade920537d6fe003b226e1aafb39ddb94d322039cce863c2bc7a49e7a6d3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wisTb4kdj1EkpbkFqBCmzYWH6lStU6wXYW_XtcgsSO1Yxmzr2juQBcY3SLEeJ3ESFcVhBhAZGghEByAka4pARiyienYJSnFBIu0Dm4iHGbcV5xOgKLWV03pnE-FdPWx6R8guu297ZY9bvUwE6FdMirfdcnlZrWH3vd-MZviofVulCZfHt9_LwEZ7XaRXf1W8fgYz57nz7B5cvieXq_hIYymqDWjtXKOkFQRblltUOIakKYw0rVmgprtSht_gBRYYybMGqINlyVwnHFLB2Dm8G3C-1X72KS27YPPp-UhFSMc84EyhQZKBPaGIOrZReavQoHiZE8BiaHwGQOTP4EJkkW0UEUM-w3LvxZ_6P6BkqdbcI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2256777690</pqid></control><display><type>article</type><title>Efficient Constant-Round Multi-party Computation Combining BMR and SPDZ</title><source>SpringerNature Journals</source><creator>Lindell, Yehuda ; Pinkas, Benny ; Smart, Nigel P. ; Yanai, Avishay</creator><creatorcontrib>Lindell, Yehuda ; Pinkas, Benny ; Smart, Nigel P. ; Yanai, Avishay</creatorcontrib><description>Recently, there has been huge progress in the field of concretely efficient secure computation, even while providing security in the presence of malicious adversaries . This is especially the case in the two-party setting, where constant-round protocols exist that remain fast even over slow networks. However, in the multi-party setting, all concretely efficient fully secure protocols, such as SPDZ, require many rounds of communication. In this paper, we present a constant-round multi-party secure computation protocol that is fully secure in the presence of malicious adversaries and for any number of corrupted parties. Our construction is based on the constant-round protocol of Beaver et al. (the BMR protocol) and is the first version of that protocol that is concretely efficient for the dishonest majority case. Our protocol includes an online phase that is extremely fast and mainly consists of each party locally evaluating a garbled circuit. For the offline phase, we present both a generic construction (using any underlying MPC protocol) and a highly efficient instantiation based on the SPDZ protocol. Our estimates show the protocol to be considerably more efficient than previous fully secure multi-party protocols.</description><identifier>ISSN: 0933-2790</identifier><identifier>EISSN: 1432-1378</identifier><identifier>DOI: 10.1007/s00145-019-09322-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Circuits ; Coding and Information Theory ; Combinatorics ; Communications Engineering ; Computational efficiency ; Computational Mathematics and Numerical Analysis ; Computer Science ; Networks ; Probability Theory and Stochastic Processes ; Protocol</subject><ispartof>Journal of cryptology, 2019-07, Vol.32 (3), p.1026-1069</ispartof><rights>International Association for Cryptologic Research 2019</rights><rights>International Association for Cryptologic Research 2019.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-bbe6fade920537d6fe003b226e1aafb39ddb94d322039cce863c2bc7a49e7a6d3</citedby><cites>FETCH-LOGICAL-c363t-bbe6fade920537d6fe003b226e1aafb39ddb94d322039cce863c2bc7a49e7a6d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00145-019-09322-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00145-019-09322-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Lindell, Yehuda</creatorcontrib><creatorcontrib>Pinkas, Benny</creatorcontrib><creatorcontrib>Smart, Nigel P.</creatorcontrib><creatorcontrib>Yanai, Avishay</creatorcontrib><title>Efficient Constant-Round Multi-party Computation Combining BMR and SPDZ</title><title>Journal of cryptology</title><addtitle>J Cryptol</addtitle><description>Recently, there has been huge progress in the field of concretely efficient secure computation, even while providing security in the presence of malicious adversaries . This is especially the case in the two-party setting, where constant-round protocols exist that remain fast even over slow networks. However, in the multi-party setting, all concretely efficient fully secure protocols, such as SPDZ, require many rounds of communication. In this paper, we present a constant-round multi-party secure computation protocol that is fully secure in the presence of malicious adversaries and for any number of corrupted parties. Our construction is based on the constant-round protocol of Beaver et al. (the BMR protocol) and is the first version of that protocol that is concretely efficient for the dishonest majority case. Our protocol includes an online phase that is extremely fast and mainly consists of each party locally evaluating a garbled circuit. For the offline phase, we present both a generic construction (using any underlying MPC protocol) and a highly efficient instantiation based on the SPDZ protocol. Our estimates show the protocol to be considerably more efficient than previous fully secure multi-party protocols.</description><subject>Circuits</subject><subject>Coding and Information Theory</subject><subject>Combinatorics</subject><subject>Communications Engineering</subject><subject>Computational efficiency</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Computer Science</subject><subject>Networks</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Protocol</subject><issn>0933-2790</issn><issn>1432-1378</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6wisTb4kdj1EkpbkFqBCmzYWH6lStU6wXYW_XtcgsSO1Yxmzr2juQBcY3SLEeJ3ESFcVhBhAZGghEByAka4pARiyienYJSnFBIu0Dm4iHGbcV5xOgKLWV03pnE-FdPWx6R8guu297ZY9bvUwE6FdMirfdcnlZrWH3vd-MZviofVulCZfHt9_LwEZ7XaRXf1W8fgYz57nz7B5cvieXq_hIYymqDWjtXKOkFQRblltUOIakKYw0rVmgprtSht_gBRYYybMGqINlyVwnHFLB2Dm8G3C-1X72KS27YPPp-UhFSMc84EyhQZKBPaGIOrZReavQoHiZE8BiaHwGQOTP4EJkkW0UEUM-w3LvxZ_6P6BkqdbcI</recordid><startdate>20190715</startdate><enddate>20190715</enddate><creator>Lindell, Yehuda</creator><creator>Pinkas, Benny</creator><creator>Smart, Nigel P.</creator><creator>Yanai, Avishay</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190715</creationdate><title>Efficient Constant-Round Multi-party Computation Combining BMR and SPDZ</title><author>Lindell, Yehuda ; Pinkas, Benny ; Smart, Nigel P. ; Yanai, Avishay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-bbe6fade920537d6fe003b226e1aafb39ddb94d322039cce863c2bc7a49e7a6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Circuits</topic><topic>Coding and Information Theory</topic><topic>Combinatorics</topic><topic>Communications Engineering</topic><topic>Computational efficiency</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Computer Science</topic><topic>Networks</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Protocol</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lindell, Yehuda</creatorcontrib><creatorcontrib>Pinkas, Benny</creatorcontrib><creatorcontrib>Smart, Nigel P.</creatorcontrib><creatorcontrib>Yanai, Avishay</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of cryptology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lindell, Yehuda</au><au>Pinkas, Benny</au><au>Smart, Nigel P.</au><au>Yanai, Avishay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Constant-Round Multi-party Computation Combining BMR and SPDZ</atitle><jtitle>Journal of cryptology</jtitle><stitle>J Cryptol</stitle><date>2019-07-15</date><risdate>2019</risdate><volume>32</volume><issue>3</issue><spage>1026</spage><epage>1069</epage><pages>1026-1069</pages><issn>0933-2790</issn><eissn>1432-1378</eissn><abstract>Recently, there has been huge progress in the field of concretely efficient secure computation, even while providing security in the presence of malicious adversaries . This is especially the case in the two-party setting, where constant-round protocols exist that remain fast even over slow networks. However, in the multi-party setting, all concretely efficient fully secure protocols, such as SPDZ, require many rounds of communication. In this paper, we present a constant-round multi-party secure computation protocol that is fully secure in the presence of malicious adversaries and for any number of corrupted parties. Our construction is based on the constant-round protocol of Beaver et al. (the BMR protocol) and is the first version of that protocol that is concretely efficient for the dishonest majority case. Our protocol includes an online phase that is extremely fast and mainly consists of each party locally evaluating a garbled circuit. For the offline phase, we present both a generic construction (using any underlying MPC protocol) and a highly efficient instantiation based on the SPDZ protocol. Our estimates show the protocol to be considerably more efficient than previous fully secure multi-party protocols.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00145-019-09322-2</doi><tpages>44</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0933-2790
ispartof Journal of cryptology, 2019-07, Vol.32 (3), p.1026-1069
issn 0933-2790
1432-1378
language eng
recordid cdi_proquest_journals_2256777690
source SpringerNature Journals
subjects Circuits
Coding and Information Theory
Combinatorics
Communications Engineering
Computational efficiency
Computational Mathematics and Numerical Analysis
Computer Science
Networks
Probability Theory and Stochastic Processes
Protocol
title Efficient Constant-Round Multi-party Computation Combining BMR and SPDZ
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A26%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Constant-Round%20Multi-party%20Computation%20Combining%20BMR%20and%20SPDZ&rft.jtitle=Journal%20of%20cryptology&rft.au=Lindell,%20Yehuda&rft.date=2019-07-15&rft.volume=32&rft.issue=3&rft.spage=1026&rft.epage=1069&rft.pages=1026-1069&rft.issn=0933-2790&rft.eissn=1432-1378&rft_id=info:doi/10.1007/s00145-019-09322-2&rft_dat=%3Cproquest_cross%3E2256777690%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2256777690&rft_id=info:pmid/&rfr_iscdi=true