On Classical Solutions for Viscous Polytropic Fluids with Degenerate Viscosities and Vacuum

In this paper, we consider the three-dimensional isentropic Navier–Stokes equations for compressible fluids allowing initial vacuum when viscosities depend on density in a superlinear power law. We introduce the notion of regular solutions and prove the local-in-time well-posedness of solutions with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive for rational mechanics and analysis 2019-12, Vol.234 (3), p.1281-1334
Hauptverfasser: Li, Yachun, Pan, Ronghua, Zhu, Shengguo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider the three-dimensional isentropic Navier–Stokes equations for compressible fluids allowing initial vacuum when viscosities depend on density in a superlinear power law. We introduce the notion of regular solutions and prove the local-in-time well-posedness of solutions with arbitrarily large initial data and a vacuum in this class, which is a long-standing open problem due to the very high degeneracy caused by a vacuum. Moreover, for certain classes of initial data with a local vacuum, we show that the regular solution that we obtained will break down in finite time, no matter how small and smooth the initial data are.
ISSN:0003-9527
1432-0673
DOI:10.1007/s00205-019-01412-6