Progresses in Predicting Post-translational Modification
Identification of the sites of post-translational modifications (PTMs) in protein, RNA, and DNA sequences is currently a very hot topic. This is because the information thus obtained is very useful for in-depth understanding the biological processes at the cellular level and for developing effective...
Gespeichert in:
Veröffentlicht in: | International journal of peptide research and therapeutics 2020-06, Vol.26 (2), p.873-888 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Identification of the sites of post-translational modifications (PTMs) in protein, RNA, and DNA sequences is currently a very hot topic. This is because the information thus obtained is very useful for in-depth understanding the biological processes at the cellular level and for developing effective drugs against major diseases including cancers as well. Although this can be done by means of various experimental techniques, it is both time-consuming and costly to determine the PTM sites purely based on experiments. With the avalanche of biological sequences generated in the post-genomic age, it is highly desired to develop bioinformatics tools for rapidly and effectively identifying the PTM sites. In the last few years, many efforts have been made in this regard, and considerable progresses have been achieved. This review is focused on those prediction methods that have the following two features. (1) They have been developed by strictly observing the 5-steps rule so that they each have a user-friendly web-server for the majority of experimental scientists to easily get their desired data without the need to go through the detailed mathematics involved. (2) Their cornerstones have been based on Pseudo Amino Acid Composition (PseAAC) or Pseudo K-tuple Nucleotide Composition (PseKNC), and hence the prediction quality is generally higher than most of the other PTM prediction methods. |
---|---|
ISSN: | 1573-3149 1573-3904 |
DOI: | 10.1007/s10989-019-09893-5 |