Properties of soft magnetic Fe-Co-V alloy produced by laser powder bed fusion
Purpose The purpose of this paper is to report on the developments in manufacturing soft magnetic materials using laser powder bed fusion (L-PBF). Design/methodology/approach Ternary soft magnetic Fe-49Co-2V powder was produced by gas atomization and used in an L-PBF machine to produce samples for m...
Gespeichert in:
Veröffentlicht in: | Rapid prototyping journal 2019-07, Vol.25 (4), p.699-707 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Purpose
The purpose of this paper is to report on the developments in manufacturing soft magnetic materials using laser powder bed fusion (L-PBF).
Design/methodology/approach
Ternary soft magnetic Fe-49Co-2V powder was produced by gas atomization and used in an L-PBF machine to produce samples for material characterization. The L-PBF process parameters were optimized for the material, using a design of experiments approach. The printed samples were exposed to different heat treatment cycles to improve the magnetic properties. The magnetic properties were measured with quasi-static direct current and alternating current measurements at different frequencies and magnetic flux densities. The mechanical properties were characterized with tensile tests. Electrical resistivity of the material was measured.
Findings
The optimized L-PBF process parameters resulted in very low porosity. The magnetic properties improved greatly after the heat treatments because of changes in microstructure. Based on the quasi-static DC measurement results, one of the heat treatment cycles led to magnetic saturation, permeability and coercivity values comparable to a commercial Fe-Co-V alloy. The other heat treatments resulted in abnormal grain growth and poor magnetic performance. The AC measurement results showed that the magnetic losses were relatively high in the samples owing to formation of eddy currents.
Research limitations/implications
The influence of L-PBF process parameters on the microstructure was not investigated; hence, understanding the relationship between process parameters, heat treatments and magnetic properties would require more research.
Originality/value
The relationship between microstructure, chemical composition, heat treatments, resistivity and magnetic/mechanical properties of L-PBF processed Fe-Co-V alloy has not been reported previously. |
---|---|
ISSN: | 1355-2546 1758-7670 |
DOI: | 10.1108/RPJ-06-2018-0136 |