Absolute regularity of semi-contractive GARCH-type processes

We prove existence and uniqueness of a stationary distribution and absolute regularity for nonlinear GARCH and INGARCH models of order (p, q). In contrast to previous work we impose, besides a geometric drift condition, only a semi-contractive condition which allows us to include models which would...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied probability 2019-03, Vol.56 (1), p.91-115
Hauptverfasser: Doukhan, Paul, Neumann, Michael H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove existence and uniqueness of a stationary distribution and absolute regularity for nonlinear GARCH and INGARCH models of order (p, q). In contrast to previous work we impose, besides a geometric drift condition, only a semi-contractive condition which allows us to include models which would be ruled out by a fully contractive condition. This results in a subgeometric rather than the more usual geometric decay rate of the mixing coefficients. The proofs are heavily based on a coupling of two versions of the processes.
ISSN:0021-9002
1475-6072
DOI:10.1017/jpr.2019.8