Ear decomposition and induced even cycles
Lovász shows that a matching covered graph G has an ear decomposition starting with an arbitrary edge of G. A 2-edge-connected cubic graph is matching covered. Using Oum’s characterization of 2-edge-connected claw-free cubic graphs (Oum, 2011) , this paper gives a characterization of 2-connected cla...
Gespeichert in:
Veröffentlicht in: | Discrete Applied Mathematics 2019-07, Vol.264, p.161-166 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Lovász shows that a matching covered graph G has an ear decomposition starting with an arbitrary edge of G. A 2-edge-connected cubic graph is matching covered. Using Oum’s characterization of 2-edge-connected claw-free cubic graphs (Oum, 2011) , this paper gives a characterization of 2-connected claw-free cubic graphs which have ear decompositions starting with an arbitrary induced even cycle. |
---|---|
ISSN: | 0166-218X 1872-6771 |
DOI: | 10.1016/j.dam.2019.01.005 |