Effect of Ti doping on the crystallography, phase, surface/interface structure and optical band gap of Ga2O3 thin films
The effect of titanium (Ti) doping on the crystal structure, phase, surface/interface chemistry, microstructure and optical band gap of gallium oxide (Ga 2 O 3 ) (GTO) films is reported. The Ti content was varied from 0 to ~ 5 at% in co-sputtering, using Ga 2 O 3 ceramic and Ti metal targets, deposi...
Gespeichert in:
Veröffentlicht in: | Journal of Materials Science 2019-09, Vol.54 (17), p.11526-11537 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The effect of titanium (Ti) doping on the crystal structure, phase, surface/interface chemistry, microstructure and optical band gap of gallium oxide (Ga
2
O
3
) (GTO) films is reported. The Ti content was varied from 0 to ~ 5 at% in co-sputtering, using Ga
2
O
3
ceramic and Ti metal targets, deposited GTO films produced. The sputtering power to the Ti target was varied in the range of 0–100 W, while keeping the sputtering power to Ga
2
O
3
constant at 100 W, to produce GTO films with 0–5 at% Ti. The Ti-incorporation-induced effects were significant for the crystal structure, phase, surface/interface chemistry and morphology, which in turn induce changes in the band gap. The high-resolution core-level X-ray photoelectron spectroscopy (XPS) analyses confirm that the Ga ions exist as Ga
3+
in both intrinsic Ga oxide and GTO films. However, XPS data reveal the formation of Ga
2
O
3
–TiO
2
films with the presence of Ti
4+
ions with increasing Ti sputtering power, i.e., higher Ti contents in GTO. Evidence for the formation of nanocrystalline Ga
2
O
3
–TiO
2
films was also found in the structural analyses performed using electron microscopy and grazing incidence X-ray diffraction. Significant band gap reduction (
E
g
~ 0.9 eV) occurs in GTO films with increasing Ti dopant concentration from 0 to 5 at%. A correlation between the Ti dopant concentration, surface/interface chemistry, microstructure and band gap of GTO films is established. |
---|---|
ISSN: | 0022-2461 1573-4803 |
DOI: | 10.1007/s10853-019-03663-w |