Large fronts in nonlocally coupled systems using Conley-Floer homology
In this paper we study travelling front solutions for nonlocal equations of the type \begin{equation} \partial_t u = N * S(u) + \nabla F(u), \qquad u(t,x) \in \mathbf{R}^d. \end{equation} Here \(N *\) denotes a convolution-type operator in the spatial variable \(x \in \mathbf{R}\), either continuous...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-07 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we study travelling front solutions for nonlocal equations of the type \begin{equation} \partial_t u = N * S(u) + \nabla F(u), \qquad u(t,x) \in \mathbf{R}^d. \end{equation} Here \(N *\) denotes a convolution-type operator in the spatial variable \(x \in \mathbf{R}\), either continuous or discrete. We develop a Morse-type theory, the Conley--Floer homology, which captures travelling front solutions in a topologically robust manner, by encoding fronts in the boundary operator of a chain complex. The equations describing the travelling fronts involve both forward and backward delay terms, possibly of infinite range. Consequently, these equations lack a natural phase space, so that classic dynamical systems tools are not at our disposal. We therefore develop, from scratch, a general transversality theory, and a classification of bounded solutions, in the absence of a phase space. In various cases the resulting Conley--Floer homology can be interpreted as a homological Conley index for multivalued vector fields. Using the Conley--Floer homology we derive existence and multiplicity results on travelling front solutions. |
---|---|
ISSN: | 2331-8422 |