Centrally generated primitive ideals of \(U(\mathfrak{n})\) for exceptional types
Let \(\mathfrak{g}\) be a complex semisimple Lie algebra, \(\mathfrak{b}\) be a Borel subalgebra of \(\mathfrak{g}\), \(\mathfrak{n}\) be the nilradical of \(\mathfrak{b}\), and \(U(\mathfrak{n})\) be the universal enveloping algebra of \(\mathfrak{n}\). We study primitive ideals of \(U(\mathfrak{n}...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-07 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let \(\mathfrak{g}\) be a complex semisimple Lie algebra, \(\mathfrak{b}\) be a Borel subalgebra of \(\mathfrak{g}\), \(\mathfrak{n}\) be the nilradical of \(\mathfrak{b}\), and \(U(\mathfrak{n})\) be the universal enveloping algebra of \(\mathfrak{n}\). We study primitive ideals of \(U(\mathfrak{n})\). Almost all primitive ideals are centrally generated, i.e., are generated by their intersections with the center \(Z(\mathfrak{n})\) of \(U(\mathfrak{n})\). We present an explicit characterization of the centrally generated primitive ideals of \(U(\mathfrak{n})\) in terms of the Dixmier map and the Kostant cascade in the case when \(\mathfrak{g}\) is a simple algebra of exceptional type. (For classical simple Lie algebras, a similar characterization was obtained by Ivan Penkov and the first author.) As a corollary, we establish a classification of centrally generated primitive ideals of \(U(\mathfrak{n})\) for an arbitrary semisimple algebra \(\mathfrak{g}\). |
---|---|
ISSN: | 2331-8422 |