Modelling the evolution of the financial impacts of flood and storm surge between 2015 and 2050 in France
CCR (Caisse Centrale de Réassurance) is a French reinsurance company playing a major role in the natural catastrophe coverage in France. Since 2003, CCR has been developing tools for the estimation of its exposure to climatic risks. These tools cover three main perils: flood, storm surge and drought...
Gespeichert in:
Veröffentlicht in: | International journal of safety and security engineering 2016-06, Vol.6 (2), p.141-149 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | CCR (Caisse Centrale de Réassurance) is a French reinsurance company playing a major role in the natural catastrophe coverage in France. Since 2003, CCR has been developing tools for the estimation of its exposure to climatic risks. These tools cover three main perils: flood, storm surge and drought. Models are used to estimate the insurance losses and are systematically used for all major climatic events. Both modelling calibration and validation are based on an important policy and claim database. It was created in 2003 and supplied every year with insurer’s data. In order to evaluate the financial exposure for insurance of extreme events, a stochastic approach has been developed since 2011, for flood, storm surge and drought. The simulation of the stochastic event set allows us to estimate the mean annual losses and losses associated with different return periods. The objective of this approach is to connect the impact models for all perils with a large set of climate simulations. ARPEGE-Climate (Météo-France) is a model that is used to generate two sets of 200 years of hourly atmospheric time series: at current conditions and at year 2050 conditions according to RCP (Representative Concentration Pathways) 4.5. The main climate data used are: hourly rainfall, wind speed and atmospheric pressure and the Soil Wetness Index that is issued from a complementary surface model. The hazard and vulnerability models developed are based on the climatic data to compute continuous loss estimations. The method proposed will take into consideration development scenarios to evaluate the consequences of demographic growth and insured values evolution. The simulations show a global loss increase in 2050 which can be attributed to climatic factors such as extreme rainfall increase or sea level rise as well as, for a major part, the population and insured value growth in areas at risk. |
---|---|
ISSN: | 2041-9031 2041-904X |
DOI: | 10.2495/SAFE-V6-N2-141-149 |