Multi-objective optimization of vehicle occupant restraint system by using evolutionary algorithm with response surface model
This research reports a vehicle occupant restraint system design by using evolutionary multi-objective optimization with response surface model. The vehicle occupant restraint systems are composed of restraint equipment, such as an airbag, a seat belt and a knee bolster. The optimization aims to imp...
Gespeichert in:
Veröffentlicht in: | International journal of computational methods and experimental measurements 2017-03, Vol.5 (2), p.163-170 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This research reports a vehicle occupant restraint system design by using evolutionary multi-objective optimization with response surface model. The vehicle occupant restraint systems are composed of restraint equipment, such as an airbag, a seat belt and a knee bolster. The optimization aims to improve the safety of the system by evaluating some indexes based on some safety regulations. Estimation mod- els of the safety indexes are introduced for accelerating the optimization. The estimation models, which are called the response surface models, are constructed by using Gaussian Process, which is a kind of machine learning method. The Gaussian Process constructs the estimation model from sampling results, which are calculated by using multi-body dynamics simulation. Some helpful information for designing the restraint systems, such as trade-off information of safety performance and contribution of design variables for the safety performance, is obtained by analysing the Pareto optimal solutions. |
---|---|
ISSN: | 2046-0546 2046-0554 |
DOI: | 10.2495/CMEM-V5-N2-163-170 |