Multi-objective optimization of vehicle occupant restraint system by using evolutionary algorithm with response surface model

This research reports a vehicle occupant restraint system design by using evolutionary multi-objective optimization with response surface model. The vehicle occupant restraint systems are composed of restraint equipment, such as an airbag, a seat belt and a knee bolster. The optimization aims to imp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computational methods and experimental measurements 2017-03, Vol.5 (2), p.163-170
1. Verfasser: Horii, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This research reports a vehicle occupant restraint system design by using evolutionary multi-objective optimization with response surface model. The vehicle occupant restraint systems are composed of restraint equipment, such as an airbag, a seat belt and a knee bolster. The optimization aims to improve the safety of the system by evaluating some indexes based on some safety regulations. Estimation mod- els of the safety indexes are introduced for accelerating the optimization. The estimation models, which are called the response surface models, are constructed by using Gaussian Process, which is a kind of machine learning method. The Gaussian Process constructs the estimation model from sampling results, which are calculated by using multi-body dynamics simulation. Some helpful information for designing the restraint systems, such as trade-off information of safety performance and contribution of design variables for the safety performance, is obtained by analysing the Pareto optimal solutions.
ISSN:2046-0546
2046-0554
DOI:10.2495/CMEM-V5-N2-163-170