Characterization of time-averaged and temporal two-phase flow structures in aerated-liquid jets using X-ray diagnostics

The structure of the two-phase flow inside the nozzle of an aerated-liquid injector and in the near field of the discharged plumes was experimentally explored with synchrotron x-ray diagnostics, including x-ray radiography, x-ray fluorescence, and x-ray high-speed imaging. One axisymmetric beryllium...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computational methods and experimental measurements 2017-10, Vol.6 (1), p.139-151
Hauptverfasser: Lin, Kuo-Cheng, Kastengren, Alan L., Peltier, Scott J., Carter, Campbell D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The structure of the two-phase flow inside the nozzle of an aerated-liquid injector and in the near field of the discharged plumes was experimentally explored with synchrotron x-ray diagnostics, including x-ray radiography, x-ray fluorescence, and x-ray high-speed imaging. One axisymmetric beryllium aerated-liquid injector featuring the inside-out aerating scheme was fabricated to mate with three aerating tube designs for the creation of two-phase flows. Water and nitrogen were doped with x-ray fluorescent elements at low concentrations to facilitate the x-ray diagnostics. Quantitative time-averaged liquid mass distributions for the two-phase mixture were successfully obtained from both radiography and fluorescence measurements. Averaged flow properties, such as liquid density and liquid velocity, at various cross-sections, were also derived from these measurements. Temporal formation and evolution of the two-phase mixture inside the aerated-liquid injector were also characterized with high-speed imaging. It was found that an annular flow is typically created in the two-phase mixture near the nozzle exit, despite the complex fluid dynamics in the liquid/gas interaction, flow passage volume change, and recirculation zone. The two-phase flow structures in the nozzle and the spray regions created from the present injector and aerating tube configurations are highly similar for a given injection condition. The major factor contributing to the similarity of the two-phase flow structures in the two regions may be the large area contraction ratio between the mixing chamber and the nozzle passage, which leads to a significant increase in flow speed and thus to aerodynamic stretching of the two-phase flow into fine structures.
ISSN:2046-0546
2046-0554
DOI:10.2495/CMEM-V6-N1-139-151