Finite-Time Blow-up in a Quasilinear Degenerate Chemotaxis System with Flux Limitation
This paper deals with the quasilinear degenerate chemotaxis system with flux limitation { u t = ∇ ⋅ ( u p ∇ u u 2 + | ∇ u | 2 ) − χ ∇ ⋅ ( u q ∇ v 1 + | ∇ v | 2 ) , x ∈ Ω , t > 0 , 0 = Δ v − μ + u , x ∈ Ω , t > 0 , where Ω : = B R ( 0 ) ⊂ R n ( n ∈ N ) is a ball with some R > 0 , and χ >...
Gespeichert in:
Veröffentlicht in: | Acta applicandae mathematicae 2020-06, Vol.167 (1), p.231-259 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper deals with the quasilinear degenerate chemotaxis system with flux limitation
{
u
t
=
∇
⋅
(
u
p
∇
u
u
2
+
|
∇
u
|
2
)
−
χ
∇
⋅
(
u
q
∇
v
1
+
|
∇
v
|
2
)
,
x
∈
Ω
,
t
>
0
,
0
=
Δ
v
−
μ
+
u
,
x
∈
Ω
,
t
>
0
,
where
Ω
:
=
B
R
(
0
)
⊂
R
n
(
n
∈
N
) is a ball with some
R
>
0
, and
χ
>
0
,
p
,
q
≥
1
,
μ
:
=
1
|
Ω
|
∫
Ω
u
0
and
u
0
is an initial data of an unknown function
u
. Bellomo–Winkler (Trans. Am. Math. Soc. Ser. B
4
, 31–67,
2017
) established existence of an initial data such that the corresponding solution blows up in finite time when
p
=
q
=
1
. This paper gives existence of blow-up solutions under some condition for
χ
and
u
0
when
1
≤
p
≤
q
. |
---|---|
ISSN: | 0167-8019 1572-9036 |
DOI: | 10.1007/s10440-019-00275-z |