Structural and Thermoelectric Properties of Solid–Liquid In4Se3-In Composite
The aim of our work was to investigate thermoelectric properties of a composite of solid In 4 Se 3 and solid or liquid indium. Polycrystalline In 4 Se 3 -In composites were prepared by a direct reaction of elements, powdering of products and sintering powders by pulsed electric current sintering tec...
Gespeichert in:
Veröffentlicht in: | Journal of electronic materials 2019-09, Vol.48 (9), p.5418-5427 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5427 |
---|---|
container_issue | 9 |
container_start_page | 5418 |
container_title | Journal of electronic materials |
container_volume | 48 |
creator | Luu, Son D. N. Parashchuk, Taras Kosonowski, Artur Phan, Thang B. Wojciechowski, Krzysztof T. |
description | The aim of our work was to investigate thermoelectric properties of a composite of solid In
4
Se
3
and solid or liquid indium. Polycrystalline In
4
Se
3
-In composites were prepared by a direct reaction of elements, powdering of products and sintering powders by pulsed electric current sintering technique. Microstructural and structural properties of obtained composites were analyzed using SEM + EDX and XRD techniques. Electrical transport properties and thermal conductivity were measured over a temperature range of 323 K ≤
T
≤ 673 K. Results show that the electrical conductivity of composite increases about four times in comparison with that of pristine In
4
Se
3
. The thermal conductivity decreases in a systematic way with the increase of In content and reaches a value of about 0.44 W m
−1
K
−1
. As a result, the addition of indium enhances the thermoelectric figure of merit ZT from 0.8 to 1.2 at 673 K. However, we found that the melting of indium at about 430 K has no significant influence on thermoelectric properties of composites. We assume that the improvement of electrical properties is mainly due to the formation of point defects in In
4
Se
3
phase and metallic properties of the In phase. To analyze formation energies of possible defects in In
4
Se
3
structure, DFT calculations within the molecular cluster model were carried out. It was found that the In interstitial atoms are energetically more favorable than the formation of Se vacancy in In
4
Se
3
structure. |
doi_str_mv | 10.1007/s11664-019-07399-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2253613615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2253613615</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-5c1dfb315e1d59c0279604dfd55f21d959ab8e6fda7a8b4b1a3d9841e28061253</originalsourceid><addsrcrecordid>eNp9kM1KxDAURoMoOI6-gKuC62hu06TNUgZ_BgYVZgR3IW0S7dBpOknK4M538A19EjtWcCdcuIt7vu_CQegcyCUQkl8FAM4zTEBgklMh8O4ATYBlFEPBXw7RhFAOmKWUHaOTENaEAIMCJuhhGX1fxd6rJlGtTlZvxm-caUwVfV0lT951xsfahMTZZOmaWn99fC7qbV_rZN5mS0PxvE1mbtO5UEdzio6saoI5-91T9Hx7s5rd48Xj3Xx2vcAV5TRiVoG2JQVmQDNRkTQXnGTaasZsClowocrCcKtVrooyK0FRLYoMTFoQDimjU3Qx9nbebXsToly73rfDS5kOZw7D7Kl0pCrvQvDGys7XG-XfJRC59yZHb3LwJn-8yd0QomMoDHD7avxf9T-pb2qzccM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2253613615</pqid></control><display><type>article</type><title>Structural and Thermoelectric Properties of Solid–Liquid In4Se3-In Composite</title><source>SpringerLink Journals - AutoHoldings</source><creator>Luu, Son D. N. ; Parashchuk, Taras ; Kosonowski, Artur ; Phan, Thang B. ; Wojciechowski, Krzysztof T.</creator><creatorcontrib>Luu, Son D. N. ; Parashchuk, Taras ; Kosonowski, Artur ; Phan, Thang B. ; Wojciechowski, Krzysztof T.</creatorcontrib><description>The aim of our work was to investigate thermoelectric properties of a composite of solid In
4
Se
3
and solid or liquid indium. Polycrystalline In
4
Se
3
-In composites were prepared by a direct reaction of elements, powdering of products and sintering powders by pulsed electric current sintering technique. Microstructural and structural properties of obtained composites were analyzed using SEM + EDX and XRD techniques. Electrical transport properties and thermal conductivity were measured over a temperature range of 323 K ≤
T
≤ 673 K. Results show that the electrical conductivity of composite increases about four times in comparison with that of pristine In
4
Se
3
. The thermal conductivity decreases in a systematic way with the increase of In content and reaches a value of about 0.44 W m
−1
K
−1
. As a result, the addition of indium enhances the thermoelectric figure of merit ZT from 0.8 to 1.2 at 673 K. However, we found that the melting of indium at about 430 K has no significant influence on thermoelectric properties of composites. We assume that the improvement of electrical properties is mainly due to the formation of point defects in In
4
Se
3
phase and metallic properties of the In phase. To analyze formation energies of possible defects in In
4
Se
3
structure, DFT calculations within the molecular cluster model were carried out. It was found that the In interstitial atoms are energetically more favorable than the formation of Se vacancy in In
4
Se
3
structure.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-019-07399-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Composite materials ; Electrical properties ; Electrical resistivity ; Electronics and Microelectronics ; Figure of merit ; Free energy ; Heat conductivity ; Heat of formation ; Heat transfer ; Indium ; Indium selenides ; Instrumentation ; Materials Science ; Molecular structure ; Optical and Electronic Materials ; Point defects ; Powdering ; Progress and Challenges for Emerging Integrated Energy Modules ; Sintering (powder metallurgy) ; Solid State Physics ; Thermal conductivity ; Thermoelectricity ; Transport properties</subject><ispartof>Journal of electronic materials, 2019-09, Vol.48 (9), p.5418-5427</ispartof><rights>The Author(s) 2019</rights><rights>Journal of Electronic Materials is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-5c1dfb315e1d59c0279604dfd55f21d959ab8e6fda7a8b4b1a3d9841e28061253</citedby><cites>FETCH-LOGICAL-c363t-5c1dfb315e1d59c0279604dfd55f21d959ab8e6fda7a8b4b1a3d9841e28061253</cites><orcidid>0000-0003-4615-7858</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-019-07399-w$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-019-07399-w$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Luu, Son D. N.</creatorcontrib><creatorcontrib>Parashchuk, Taras</creatorcontrib><creatorcontrib>Kosonowski, Artur</creatorcontrib><creatorcontrib>Phan, Thang B.</creatorcontrib><creatorcontrib>Wojciechowski, Krzysztof T.</creatorcontrib><title>Structural and Thermoelectric Properties of Solid–Liquid In4Se3-In Composite</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>The aim of our work was to investigate thermoelectric properties of a composite of solid In
4
Se
3
and solid or liquid indium. Polycrystalline In
4
Se
3
-In composites were prepared by a direct reaction of elements, powdering of products and sintering powders by pulsed electric current sintering technique. Microstructural and structural properties of obtained composites were analyzed using SEM + EDX and XRD techniques. Electrical transport properties and thermal conductivity were measured over a temperature range of 323 K ≤
T
≤ 673 K. Results show that the electrical conductivity of composite increases about four times in comparison with that of pristine In
4
Se
3
. The thermal conductivity decreases in a systematic way with the increase of In content and reaches a value of about 0.44 W m
−1
K
−1
. As a result, the addition of indium enhances the thermoelectric figure of merit ZT from 0.8 to 1.2 at 673 K. However, we found that the melting of indium at about 430 K has no significant influence on thermoelectric properties of composites. We assume that the improvement of electrical properties is mainly due to the formation of point defects in In
4
Se
3
phase and metallic properties of the In phase. To analyze formation energies of possible defects in In
4
Se
3
structure, DFT calculations within the molecular cluster model were carried out. It was found that the In interstitial atoms are energetically more favorable than the formation of Se vacancy in In
4
Se
3
structure.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Composite materials</subject><subject>Electrical properties</subject><subject>Electrical resistivity</subject><subject>Electronics and Microelectronics</subject><subject>Figure of merit</subject><subject>Free energy</subject><subject>Heat conductivity</subject><subject>Heat of formation</subject><subject>Heat transfer</subject><subject>Indium</subject><subject>Indium selenides</subject><subject>Instrumentation</subject><subject>Materials Science</subject><subject>Molecular structure</subject><subject>Optical and Electronic Materials</subject><subject>Point defects</subject><subject>Powdering</subject><subject>Progress and Challenges for Emerging Integrated Energy Modules</subject><subject>Sintering (powder metallurgy)</subject><subject>Solid State Physics</subject><subject>Thermal conductivity</subject><subject>Thermoelectricity</subject><subject>Transport properties</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kM1KxDAURoMoOI6-gKuC62hu06TNUgZ_BgYVZgR3IW0S7dBpOknK4M538A19EjtWcCdcuIt7vu_CQegcyCUQkl8FAM4zTEBgklMh8O4ATYBlFEPBXw7RhFAOmKWUHaOTENaEAIMCJuhhGX1fxd6rJlGtTlZvxm-caUwVfV0lT951xsfahMTZZOmaWn99fC7qbV_rZN5mS0PxvE1mbtO5UEdzio6saoI5-91T9Hx7s5rd48Xj3Xx2vcAV5TRiVoG2JQVmQDNRkTQXnGTaasZsClowocrCcKtVrooyK0FRLYoMTFoQDimjU3Qx9nbebXsToly73rfDS5kOZw7D7Kl0pCrvQvDGys7XG-XfJRC59yZHb3LwJn-8yd0QomMoDHD7avxf9T-pb2qzccM</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Luu, Son D. N.</creator><creator>Parashchuk, Taras</creator><creator>Kosonowski, Artur</creator><creator>Phan, Thang B.</creator><creator>Wojciechowski, Krzysztof T.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0003-4615-7858</orcidid></search><sort><creationdate>20190901</creationdate><title>Structural and Thermoelectric Properties of Solid–Liquid In4Se3-In Composite</title><author>Luu, Son D. N. ; Parashchuk, Taras ; Kosonowski, Artur ; Phan, Thang B. ; Wojciechowski, Krzysztof T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-5c1dfb315e1d59c0279604dfd55f21d959ab8e6fda7a8b4b1a3d9841e28061253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Composite materials</topic><topic>Electrical properties</topic><topic>Electrical resistivity</topic><topic>Electronics and Microelectronics</topic><topic>Figure of merit</topic><topic>Free energy</topic><topic>Heat conductivity</topic><topic>Heat of formation</topic><topic>Heat transfer</topic><topic>Indium</topic><topic>Indium selenides</topic><topic>Instrumentation</topic><topic>Materials Science</topic><topic>Molecular structure</topic><topic>Optical and Electronic Materials</topic><topic>Point defects</topic><topic>Powdering</topic><topic>Progress and Challenges for Emerging Integrated Energy Modules</topic><topic>Sintering (powder metallurgy)</topic><topic>Solid State Physics</topic><topic>Thermal conductivity</topic><topic>Thermoelectricity</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luu, Son D. N.</creatorcontrib><creatorcontrib>Parashchuk, Taras</creatorcontrib><creatorcontrib>Kosonowski, Artur</creatorcontrib><creatorcontrib>Phan, Thang B.</creatorcontrib><creatorcontrib>Wojciechowski, Krzysztof T.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luu, Son D. N.</au><au>Parashchuk, Taras</au><au>Kosonowski, Artur</au><au>Phan, Thang B.</au><au>Wojciechowski, Krzysztof T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural and Thermoelectric Properties of Solid–Liquid In4Se3-In Composite</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>48</volume><issue>9</issue><spage>5418</spage><epage>5427</epage><pages>5418-5427</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>The aim of our work was to investigate thermoelectric properties of a composite of solid In
4
Se
3
and solid or liquid indium. Polycrystalline In
4
Se
3
-In composites were prepared by a direct reaction of elements, powdering of products and sintering powders by pulsed electric current sintering technique. Microstructural and structural properties of obtained composites were analyzed using SEM + EDX and XRD techniques. Electrical transport properties and thermal conductivity were measured over a temperature range of 323 K ≤
T
≤ 673 K. Results show that the electrical conductivity of composite increases about four times in comparison with that of pristine In
4
Se
3
. The thermal conductivity decreases in a systematic way with the increase of In content and reaches a value of about 0.44 W m
−1
K
−1
. As a result, the addition of indium enhances the thermoelectric figure of merit ZT from 0.8 to 1.2 at 673 K. However, we found that the melting of indium at about 430 K has no significant influence on thermoelectric properties of composites. We assume that the improvement of electrical properties is mainly due to the formation of point defects in In
4
Se
3
phase and metallic properties of the In phase. To analyze formation energies of possible defects in In
4
Se
3
structure, DFT calculations within the molecular cluster model were carried out. It was found that the In interstitial atoms are energetically more favorable than the formation of Se vacancy in In
4
Se
3
structure.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-019-07399-w</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4615-7858</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-5235 |
ispartof | Journal of electronic materials, 2019-09, Vol.48 (9), p.5418-5427 |
issn | 0361-5235 1543-186X |
language | eng |
recordid | cdi_proquest_journals_2253613615 |
source | SpringerLink Journals - AutoHoldings |
subjects | Characterization and Evaluation of Materials Chemistry and Materials Science Composite materials Electrical properties Electrical resistivity Electronics and Microelectronics Figure of merit Free energy Heat conductivity Heat of formation Heat transfer Indium Indium selenides Instrumentation Materials Science Molecular structure Optical and Electronic Materials Point defects Powdering Progress and Challenges for Emerging Integrated Energy Modules Sintering (powder metallurgy) Solid State Physics Thermal conductivity Thermoelectricity Transport properties |
title | Structural and Thermoelectric Properties of Solid–Liquid In4Se3-In Composite |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A56%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20and%20Thermoelectric%20Properties%20of%20Solid%E2%80%93Liquid%20In4Se3-In%20Composite&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Luu,%20Son%20D.%20N.&rft.date=2019-09-01&rft.volume=48&rft.issue=9&rft.spage=5418&rft.epage=5427&rft.pages=5418-5427&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-019-07399-w&rft_dat=%3Cproquest_cross%3E2253613615%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2253613615&rft_id=info:pmid/&rfr_iscdi=true |