Interrelationship between soil depth and soil properties of Pieniny National Park forest (Poland)
The purpose of this research was to investigate the relationship between soil biota such as microbial activity, soil fauna (e.g., earthworms and enchytraeids), and soil physical and chemical properties. The study area was located in Pieniny National Park (PNP) in the Carpathian Mountains in southern...
Gespeichert in:
Veröffentlicht in: | Journal of mountain science 2019-07, Vol.16 (7), p.1534-1545 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The purpose of this research was to investigate the relationship between soil biota such as microbial activity, soil fauna (e.g., earthworms and enchytraeids), and soil physical and chemical properties. The study area was located in Pieniny National Park (PNP) in the Carpathian Mountains in southern Poland. Soil samples were collected from six forest monitoring areas of PNP from two soil layers (at 0–15 cm and 15–30 cm down, respectively). The investigated soils were classified to eutric cambisols and had silt or silt loam soil texture. Upon analysis, soil aggregate stability index was connected with other physical, chemical, and biological soil properties. It was noted that the stability index of 3 mm to 5 mm soil aggregates influenced pH and dissolved organic carbon. The stability index of 2 mm to 3 mm soil aggregates was positively correlated with dissolved organic carbon, soil moisture, microbial biomass carbon, total organic carbon, total nitrogen, and enchytraeid density, and negatively correlated with bulk density, particle density, porosity, and permanent wilting point. The stability index of 1 mm to 2 mm soil aggregates was positively correlated with total nitrogen, enchytraeid and earthworm density and negatively correlated with particle density, porosity, and permanent wilting point. The study has shown what factors create a stable soil structure in the forest soils of PNP. |
---|---|
ISSN: | 1672-6316 1993-0321 1008-2786 |
DOI: | 10.1007/s11629-019-5441-8 |