On higher-order Codazzi tensors on complete Riemannian manifolds

We prove several Liouville-type nonexistence theorems for higher-order Codazzi tensors and classical Codazzi tensors on complete and compact Riemannian manifolds, in particular. These results will be obtained by using theorems of the connections between the geometry of a complete smooth manifold and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of global analysis and geometry 2019-10, Vol.56 (3), p.429-442
Hauptverfasser: Shandra, Igor G., Stepanov, Sergey E., Mikeš, Josef
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove several Liouville-type nonexistence theorems for higher-order Codazzi tensors and classical Codazzi tensors on complete and compact Riemannian manifolds, in particular. These results will be obtained by using theorems of the connections between the geometry of a complete smooth manifold and the global behavior of its subharmonic functions. In conclusion, we show applications of this method for global geometry of a complete locally conformally flat Riemannian manifold with constant scalar curvature because, its Ricci tensor is a Codazzi tensor and for global geometry of a complete hypersurface in a standard sphere because its second fundamental form is also a Codazzi tensor.
ISSN:0232-704X
1572-9060
DOI:10.1007/s10455-019-09673-w