Performance Analysis of a Multistage Centrifugal Pump Used in an Organic Rankine Cycle (ORC) System under Various Condensation Conditions
In an organic Rankine cycle (ORC) system, the working fluid pump plays an important role in the system performance. This paper focused on the operating characteristics of a multistage centrifugal pump at various speeds and condensation conditions. The experimental investigation was carried out to as...
Gespeichert in:
Veröffentlicht in: | Journal of thermal science 2019-08, Vol.28 (4), p.621-634 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In an organic Rankine cycle (ORC) system, the working fluid pump plays an important role in the system performance. This paper focused on the operating characteristics of a multistage centrifugal pump at various speeds and condensation conditions. The experimental investigation was carried out to assess the influence of the performance of the pump by the ORC system with special attention to actual net power output, thermal efficiency as well as back work ratio (
BWR
). The results showed that an increase in the pump speed led to an increase in the mass flow rate and expand in the operating range of the outlet pressure. The mass flow rate decreased nonlinearly with the increase of the outlet pressure from 0.22 to 2.41 MPa; the electric power consumption changed between 151.54 and 2409.34 W and the mechanical efficiency of the pump changed from 7.90% to 61.88% when the pump speed varied from 1160 to 2900 r/min. Furthermore, at lower pump specific speed the ORC system achieved higher thermal efficiency, which suggested that an ultra-low specific speed pump was a promising candidate for an ORC system. The results also suggested that the effects of condensation conditions on the pump performance decreased with the pump speed increasing and
BWR
was relatively sensitive to the condensation conditions, especially at low pump speed. |
---|---|
ISSN: | 1003-2169 1993-033X |
DOI: | 10.1007/s11630-019-1069-9 |