THE ZIG-ZAG PROCESS AND SUPER-EFFICIENT SAMPLING FOR BAYESIAN ANALYSIS OF BIG DATA

Standard MCMC methods can scale poorly to big data settings due to the need to evaluate the likelihood at each iteration. There have been a number of approximate MCMC algorithms that use sub-sampling ideas to reduce this computational burden, but with the drawback that these algorithms no longer tar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of statistics 2019-06, Vol.47 (3), p.1288-1320
Hauptverfasser: Bierkens, Joris, Fearnhead, Paul, Roberts, Gareth
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Standard MCMC methods can scale poorly to big data settings due to the need to evaluate the likelihood at each iteration. There have been a number of approximate MCMC algorithms that use sub-sampling ideas to reduce this computational burden, but with the drawback that these algorithms no longer target the true posterior distribution. We introduce a new family of Monte Carlo methods based upon a multidimensional version of the Zig-Zag process of [Ann. Appl. Probab. 27 (2017) 846–882], a continuous-time piecewise deterministic Markov process. While traditional MCMC methods are reversible by construction (a property which is known to inhibit rapid convergence) the Zig-Zag process offers a flexible nonreversible alternative which we observe to often have favourable convergence properties. We show how the Zig-Zag process can be simulated without discretisation error, and give conditions for the process to be ergodic. Most importantly, we introduce a sub-sampling version of the Zig-Zag process that is an example of an exact approximate scheme, that is, the resulting approximate process still has the posterior as its stationary distribution. Furthermore, if we use a control-variate idea to reduce the variance of our unbiased estimator, then the Zig-Zag process can be super-efficient: after an initial preprocessing step, essentially independent samples from the posterior distribution are obtained at a computational cost which does not depend on the size of the data.
ISSN:0090-5364
2168-8966
DOI:10.1214/18-aos1715