GAUSSIAN APPROXIMATION OF MAXIMA OF WIENER FUNCTIONALS AND ITS APPLICATION TO HIGH-FREQUENCY DATA

This paper establishes an upper bound for the Kolmogorov distance between the maximum of a high-dimensional vector of smooth Wiener functionals and the maximum of a Gaussian random vector. As a special case, we show that the maximum of multiple Wiener–Itô integrals with common orders is well approxi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of statistics 2019-06, Vol.47 (3), p.1663-1687
1. Verfasser: Koike, Yuta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1687
container_issue 3
container_start_page 1663
container_title The Annals of statistics
container_volume 47
creator Koike, Yuta
description This paper establishes an upper bound for the Kolmogorov distance between the maximum of a high-dimensional vector of smooth Wiener functionals and the maximum of a Gaussian random vector. As a special case, we show that the maximum of multiple Wiener–Itô integrals with common orders is well approximated by its Gaussian analog in terms of the Kolmogorov distance if their covariance matrices are close to each other and the maximum of the fourth cumulants of the multiple Wiener–Itô integrals is close to zero. This may be viewed as a new kind of fourth moment phenomenon, which has attracted considerable attention in the recent studies of probability. This type of Gaussian approximation result has many potential applications to statistics. To illustrate this point, we present two statistical applications in high-frequency financial econometrics: One is the hypothesis testing problem for the absence of lead-lag effects and the other is the construction of uniform confidence bands for spot volatility.
doi_str_mv 10.1214/18-aos1731
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2251700864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26730437</jstor_id><sourcerecordid>26730437</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-6f0d0208450550d24dd20a50c55ebe2534d9f6a18d2c6649cfa20d5362c46cc43</originalsourceid><addsrcrecordid>eNo9kM1Pg0AQxTdGE2v14t1kE28m6Owny3FDoSWhUAtEPRFcILFRadn24H8vBONpZjK_Ny_zELol8Ego4U9EOVVnicvIGZpRIpWjPCnP0QzAA0cwyS_RlbU7ABAeZzNULXWRZZFOsN5stulrtNZ5lCY4DfFaj9PYvURBEmxxWCT-uNRxhnWywFGejao48idNnuJVtFw54TZ4LoLEf8MLnetrdNFWn7a5-atzVIRB7q-cOF0OytgxTLGjI1uogYLiAoSAmvK6plAJMEI07w0VjNdeKyuiamqk5J5pKwr18BE1XBrD2RzdT3f3fXc4NfZY7rpT_z1YlpQK4gIoOVIPE2X6ztq-act9__FV9T8lgXKMsCSq1Gk2RjjAdxO8s8eu_yepdBlw5rJfddljhw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2251700864</pqid></control><display><type>article</type><title>GAUSSIAN APPROXIMATION OF MAXIMA OF WIENER FUNCTIONALS AND ITS APPLICATION TO HIGH-FREQUENCY DATA</title><source>Jstor Complete Legacy</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Project Euclid Complete</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Koike, Yuta</creator><creatorcontrib>Koike, Yuta</creatorcontrib><description>This paper establishes an upper bound for the Kolmogorov distance between the maximum of a high-dimensional vector of smooth Wiener functionals and the maximum of a Gaussian random vector. As a special case, we show that the maximum of multiple Wiener–Itô integrals with common orders is well approximated by its Gaussian analog in terms of the Kolmogorov distance if their covariance matrices are close to each other and the maximum of the fourth cumulants of the multiple Wiener–Itô integrals is close to zero. This may be viewed as a new kind of fourth moment phenomenon, which has attracted considerable attention in the recent studies of probability. This type of Gaussian approximation result has many potential applications to statistics. To illustrate this point, we present two statistical applications in high-frequency financial econometrics: One is the hypothesis testing problem for the absence of lead-lag effects and the other is the construction of uniform confidence bands for spot volatility.</description><identifier>ISSN: 0090-5364</identifier><identifier>EISSN: 2168-8966</identifier><identifier>DOI: 10.1214/18-aos1731</identifier><language>eng</language><publisher>Hayward: Institute of Mathematical Statistics</publisher><subject>Approximation ; Confidence ; Covariance matrix ; Econometrics ; Hypothesis testing ; Integrals ; Mathematical analysis ; Normal distribution ; Statistical analysis ; Upper bounds ; Volatility</subject><ispartof>The Annals of statistics, 2019-06, Vol.47 (3), p.1663-1687</ispartof><rights>Institute of Mathematical Statistics, 2019</rights><rights>Copyright Institute of Mathematical Statistics Jun 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-6f0d0208450550d24dd20a50c55ebe2534d9f6a18d2c6649cfa20d5362c46cc43</citedby><cites>FETCH-LOGICAL-c383t-6f0d0208450550d24dd20a50c55ebe2534d9f6a18d2c6649cfa20d5362c46cc43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26730437$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26730437$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Koike, Yuta</creatorcontrib><title>GAUSSIAN APPROXIMATION OF MAXIMA OF WIENER FUNCTIONALS AND ITS APPLICATION TO HIGH-FREQUENCY DATA</title><title>The Annals of statistics</title><description>This paper establishes an upper bound for the Kolmogorov distance between the maximum of a high-dimensional vector of smooth Wiener functionals and the maximum of a Gaussian random vector. As a special case, we show that the maximum of multiple Wiener–Itô integrals with common orders is well approximated by its Gaussian analog in terms of the Kolmogorov distance if their covariance matrices are close to each other and the maximum of the fourth cumulants of the multiple Wiener–Itô integrals is close to zero. This may be viewed as a new kind of fourth moment phenomenon, which has attracted considerable attention in the recent studies of probability. This type of Gaussian approximation result has many potential applications to statistics. To illustrate this point, we present two statistical applications in high-frequency financial econometrics: One is the hypothesis testing problem for the absence of lead-lag effects and the other is the construction of uniform confidence bands for spot volatility.</description><subject>Approximation</subject><subject>Confidence</subject><subject>Covariance matrix</subject><subject>Econometrics</subject><subject>Hypothesis testing</subject><subject>Integrals</subject><subject>Mathematical analysis</subject><subject>Normal distribution</subject><subject>Statistical analysis</subject><subject>Upper bounds</subject><subject>Volatility</subject><issn>0090-5364</issn><issn>2168-8966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kM1Pg0AQxTdGE2v14t1kE28m6Owny3FDoSWhUAtEPRFcILFRadn24H8vBONpZjK_Ny_zELol8Ego4U9EOVVnicvIGZpRIpWjPCnP0QzAA0cwyS_RlbU7ABAeZzNULXWRZZFOsN5stulrtNZ5lCY4DfFaj9PYvURBEmxxWCT-uNRxhnWywFGejao48idNnuJVtFw54TZ4LoLEf8MLnetrdNFWn7a5-atzVIRB7q-cOF0OytgxTLGjI1uogYLiAoSAmvK6plAJMEI07w0VjNdeKyuiamqk5J5pKwr18BE1XBrD2RzdT3f3fXc4NfZY7rpT_z1YlpQK4gIoOVIPE2X6ztq-act9__FV9T8lgXKMsCSq1Gk2RjjAdxO8s8eu_yepdBlw5rJfddljhw</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Koike, Yuta</creator><general>Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20190601</creationdate><title>GAUSSIAN APPROXIMATION OF MAXIMA OF WIENER FUNCTIONALS AND ITS APPLICATION TO HIGH-FREQUENCY DATA</title><author>Koike, Yuta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-6f0d0208450550d24dd20a50c55ebe2534d9f6a18d2c6649cfa20d5362c46cc43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Approximation</topic><topic>Confidence</topic><topic>Covariance matrix</topic><topic>Econometrics</topic><topic>Hypothesis testing</topic><topic>Integrals</topic><topic>Mathematical analysis</topic><topic>Normal distribution</topic><topic>Statistical analysis</topic><topic>Upper bounds</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koike, Yuta</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Annals of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koike, Yuta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GAUSSIAN APPROXIMATION OF MAXIMA OF WIENER FUNCTIONALS AND ITS APPLICATION TO HIGH-FREQUENCY DATA</atitle><jtitle>The Annals of statistics</jtitle><date>2019-06-01</date><risdate>2019</risdate><volume>47</volume><issue>3</issue><spage>1663</spage><epage>1687</epage><pages>1663-1687</pages><issn>0090-5364</issn><eissn>2168-8966</eissn><abstract>This paper establishes an upper bound for the Kolmogorov distance between the maximum of a high-dimensional vector of smooth Wiener functionals and the maximum of a Gaussian random vector. As a special case, we show that the maximum of multiple Wiener–Itô integrals with common orders is well approximated by its Gaussian analog in terms of the Kolmogorov distance if their covariance matrices are close to each other and the maximum of the fourth cumulants of the multiple Wiener–Itô integrals is close to zero. This may be viewed as a new kind of fourth moment phenomenon, which has attracted considerable attention in the recent studies of probability. This type of Gaussian approximation result has many potential applications to statistics. To illustrate this point, we present two statistical applications in high-frequency financial econometrics: One is the hypothesis testing problem for the absence of lead-lag effects and the other is the construction of uniform confidence bands for spot volatility.</abstract><cop>Hayward</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/18-aos1731</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0090-5364
ispartof The Annals of statistics, 2019-06, Vol.47 (3), p.1663-1687
issn 0090-5364
2168-8966
language eng
recordid cdi_proquest_journals_2251700864
source Jstor Complete Legacy; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Project Euclid Complete; JSTOR Mathematics & Statistics
subjects Approximation
Confidence
Covariance matrix
Econometrics
Hypothesis testing
Integrals
Mathematical analysis
Normal distribution
Statistical analysis
Upper bounds
Volatility
title GAUSSIAN APPROXIMATION OF MAXIMA OF WIENER FUNCTIONALS AND ITS APPLICATION TO HIGH-FREQUENCY DATA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T23%3A58%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GAUSSIAN%20APPROXIMATION%20OF%20MAXIMA%20OF%20WIENER%20FUNCTIONALS%20AND%20ITS%20APPLICATION%20TO%20HIGH-FREQUENCY%20DATA&rft.jtitle=The%20Annals%20of%20statistics&rft.au=Koike,%20Yuta&rft.date=2019-06-01&rft.volume=47&rft.issue=3&rft.spage=1663&rft.epage=1687&rft.pages=1663-1687&rft.issn=0090-5364&rft.eissn=2168-8966&rft_id=info:doi/10.1214/18-aos1731&rft_dat=%3Cjstor_proqu%3E26730437%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2251700864&rft_id=info:pmid/&rft_jstor_id=26730437&rfr_iscdi=true