GAUSSIAN APPROXIMATION OF MAXIMA OF WIENER FUNCTIONALS AND ITS APPLICATION TO HIGH-FREQUENCY DATA

This paper establishes an upper bound for the Kolmogorov distance between the maximum of a high-dimensional vector of smooth Wiener functionals and the maximum of a Gaussian random vector. As a special case, we show that the maximum of multiple Wiener–Itô integrals with common orders is well approxi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of statistics 2019-06, Vol.47 (3), p.1663-1687
1. Verfasser: Koike, Yuta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper establishes an upper bound for the Kolmogorov distance between the maximum of a high-dimensional vector of smooth Wiener functionals and the maximum of a Gaussian random vector. As a special case, we show that the maximum of multiple Wiener–Itô integrals with common orders is well approximated by its Gaussian analog in terms of the Kolmogorov distance if their covariance matrices are close to each other and the maximum of the fourth cumulants of the multiple Wiener–Itô integrals is close to zero. This may be viewed as a new kind of fourth moment phenomenon, which has attracted considerable attention in the recent studies of probability. This type of Gaussian approximation result has many potential applications to statistics. To illustrate this point, we present two statistical applications in high-frequency financial econometrics: One is the hypothesis testing problem for the absence of lead-lag effects and the other is the construction of uniform confidence bands for spot volatility.
ISSN:0090-5364
2168-8966
DOI:10.1214/18-aos1731