A comparative investigation of premixed flame propagation behavior of syngas-air mixtures in closed and half-open ducts

A comparative investigation has been developed in conjunction with high-speed cameras and piezoelectric gauge to gain deep insight into the propagation behavior of premixed syngas-air flames. Experiments were carried out in two constant rectangular ducts, one closed duct (C-D) and one half-open duct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy (Oxford) 2019-07, Vol.178, p.436-446
Hauptverfasser: Yang, Xufeng, Yu, Minggao, Zheng, Kai, Wan, Shaojie, Wang, Liang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 446
container_issue
container_start_page 436
container_title Energy (Oxford)
container_volume 178
creator Yang, Xufeng
Yu, Minggao
Zheng, Kai
Wan, Shaojie
Wang, Liang
description A comparative investigation has been developed in conjunction with high-speed cameras and piezoelectric gauge to gain deep insight into the propagation behavior of premixed syngas-air flames. Experiments were carried out in two constant rectangular ducts, one closed duct (C-D) and one half-open duct (HO-D). One important finding is that the flame behavior in the C-D is different than that in the HO-D. The repeatable distorted tulip flame forms in the C-D while an unrepeatable distorted tulip shape forms in the HO-D. The repeated pressure-flame interactions result in a repetitive process of the tulip distortion. The downstream opening end of the duct has a significant influence on the flame propagation characteristics after the flame surface reaches the lateral walls. The opening end results in a higher maximum flame tip velocity, a lower overpressure and a longer plane formation time in the HO-D. Meanwhile, the position of the plane flame formation decreases as hydrogen fraction increases in the C-D while the opposite is true in the HO-D. Furthermore, the pressure build-up in both ducts are examined, and the maximum flame tip velocity is of importance for distorted tulip flame formation. •Premixed flame behavior of syngas-air mixtures is comparatively investigated.•The formation of the distorted tulip flame is specifically compared and discussed.•Flame tip and pressure dynamics are in close connection with flame structural change.•The time twall of the two ducts is the same while the time ttulip is different.•The sidewalls and the opening end can affect the flame propagation behavior.
doi_str_mv 10.1016/j.energy.2019.04.135
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2251696020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544219307686</els_id><sourcerecordid>2251696020</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-ef96f60d6faca7fffe813f1b368d13cd173fdb03e9e455bee79610c04c1cbf953</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIfcLDEOWEdJ05yQaoqXlIlLnC2HHvdumrjYKeF_j2u2jOn1WhnZneGkHsGOQMmHtc59hiWh7wA1uZQ5oxXF2TCmppnom6qSzIBLiCryrK4JjcxrgGgatp2Qn5mVPvtoIIa3R6p6_cYR7dMyPfUWzoE3LpfNNRu1BYT9IM6bztcqb3z4UiLh36pYqZcoIk-7gLG5EX1xsekVb2hK7WxmR-wp2anx3hLrqzaRLw7zyn5enn-nL9li4_X9_lskWnOyzFD2worwAirtKqttdgwblnHRWMY14bV3JoOOLZYVlWHWLeCgYZSM93ZtuJT8nDyTZ9_71I2ufa70KeTsigqJloBBSRWeWLp4GMMaOUQ3FaFg2QgjxXLtTxVLI8VSyhlqjjJnk4yTAn2DoOM2mGv0biAepTGu_8N_gCtQooU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2251696020</pqid></control><display><type>article</type><title>A comparative investigation of premixed flame propagation behavior of syngas-air mixtures in closed and half-open ducts</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Yang, Xufeng ; Yu, Minggao ; Zheng, Kai ; Wan, Shaojie ; Wang, Liang</creator><creatorcontrib>Yang, Xufeng ; Yu, Minggao ; Zheng, Kai ; Wan, Shaojie ; Wang, Liang</creatorcontrib><description>A comparative investigation has been developed in conjunction with high-speed cameras and piezoelectric gauge to gain deep insight into the propagation behavior of premixed syngas-air flames. Experiments were carried out in two constant rectangular ducts, one closed duct (C-D) and one half-open duct (HO-D). One important finding is that the flame behavior in the C-D is different than that in the HO-D. The repeatable distorted tulip flame forms in the C-D while an unrepeatable distorted tulip shape forms in the HO-D. The repeated pressure-flame interactions result in a repetitive process of the tulip distortion. The downstream opening end of the duct has a significant influence on the flame propagation characteristics after the flame surface reaches the lateral walls. The opening end results in a higher maximum flame tip velocity, a lower overpressure and a longer plane formation time in the HO-D. Meanwhile, the position of the plane flame formation decreases as hydrogen fraction increases in the C-D while the opposite is true in the HO-D. Furthermore, the pressure build-up in both ducts are examined, and the maximum flame tip velocity is of importance for distorted tulip flame formation. •Premixed flame behavior of syngas-air mixtures is comparatively investigated.•The formation of the distorted tulip flame is specifically compared and discussed.•Flame tip and pressure dynamics are in close connection with flame structural change.•The time twall of the two ducts is the same while the time ttulip is different.•The sidewalls and the opening end can affect the flame propagation behavior.</description><identifier>ISSN: 0360-5442</identifier><identifier>EISSN: 1873-6785</identifier><identifier>DOI: 10.1016/j.energy.2019.04.135</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Cameras ; Distortion ; Downstream effects ; Ducts ; Flame propagation ; Flame tip velocity ; High speed cameras ; Overpressure ; Piezoelectric gages ; Piezoelectricity ; Premixed flame ; Premixed flames ; Pressure ; Pressure waves ; Propagation ; Syngas ; Synthesis gas ; Tulip distortion ; Velocity</subject><ispartof>Energy (Oxford), 2019-07, Vol.178, p.436-446</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 1, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-ef96f60d6faca7fffe813f1b368d13cd173fdb03e9e455bee79610c04c1cbf953</citedby><cites>FETCH-LOGICAL-c334t-ef96f60d6faca7fffe813f1b368d13cd173fdb03e9e455bee79610c04c1cbf953</cites><orcidid>0000-0001-5480-5857</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.energy.2019.04.135$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Yang, Xufeng</creatorcontrib><creatorcontrib>Yu, Minggao</creatorcontrib><creatorcontrib>Zheng, Kai</creatorcontrib><creatorcontrib>Wan, Shaojie</creatorcontrib><creatorcontrib>Wang, Liang</creatorcontrib><title>A comparative investigation of premixed flame propagation behavior of syngas-air mixtures in closed and half-open ducts</title><title>Energy (Oxford)</title><description>A comparative investigation has been developed in conjunction with high-speed cameras and piezoelectric gauge to gain deep insight into the propagation behavior of premixed syngas-air flames. Experiments were carried out in two constant rectangular ducts, one closed duct (C-D) and one half-open duct (HO-D). One important finding is that the flame behavior in the C-D is different than that in the HO-D. The repeatable distorted tulip flame forms in the C-D while an unrepeatable distorted tulip shape forms in the HO-D. The repeated pressure-flame interactions result in a repetitive process of the tulip distortion. The downstream opening end of the duct has a significant influence on the flame propagation characteristics after the flame surface reaches the lateral walls. The opening end results in a higher maximum flame tip velocity, a lower overpressure and a longer plane formation time in the HO-D. Meanwhile, the position of the plane flame formation decreases as hydrogen fraction increases in the C-D while the opposite is true in the HO-D. Furthermore, the pressure build-up in both ducts are examined, and the maximum flame tip velocity is of importance for distorted tulip flame formation. •Premixed flame behavior of syngas-air mixtures is comparatively investigated.•The formation of the distorted tulip flame is specifically compared and discussed.•Flame tip and pressure dynamics are in close connection with flame structural change.•The time twall of the two ducts is the same while the time ttulip is different.•The sidewalls and the opening end can affect the flame propagation behavior.</description><subject>Cameras</subject><subject>Distortion</subject><subject>Downstream effects</subject><subject>Ducts</subject><subject>Flame propagation</subject><subject>Flame tip velocity</subject><subject>High speed cameras</subject><subject>Overpressure</subject><subject>Piezoelectric gages</subject><subject>Piezoelectricity</subject><subject>Premixed flame</subject><subject>Premixed flames</subject><subject>Pressure</subject><subject>Pressure waves</subject><subject>Propagation</subject><subject>Syngas</subject><subject>Synthesis gas</subject><subject>Tulip distortion</subject><subject>Velocity</subject><issn>0360-5442</issn><issn>1873-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIfcLDEOWEdJ05yQaoqXlIlLnC2HHvdumrjYKeF_j2u2jOn1WhnZneGkHsGOQMmHtc59hiWh7wA1uZQ5oxXF2TCmppnom6qSzIBLiCryrK4JjcxrgGgatp2Qn5mVPvtoIIa3R6p6_cYR7dMyPfUWzoE3LpfNNRu1BYT9IM6bztcqb3z4UiLh36pYqZcoIk-7gLG5EX1xsekVb2hK7WxmR-wp2anx3hLrqzaRLw7zyn5enn-nL9li4_X9_lskWnOyzFD2worwAirtKqttdgwblnHRWMY14bV3JoOOLZYVlWHWLeCgYZSM93ZtuJT8nDyTZ9_71I2ufa70KeTsigqJloBBSRWeWLp4GMMaOUQ3FaFg2QgjxXLtTxVLI8VSyhlqjjJnk4yTAn2DoOM2mGv0biAepTGu_8N_gCtQooU</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Yang, Xufeng</creator><creator>Yu, Minggao</creator><creator>Zheng, Kai</creator><creator>Wan, Shaojie</creator><creator>Wang, Liang</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-5480-5857</orcidid></search><sort><creationdate>20190701</creationdate><title>A comparative investigation of premixed flame propagation behavior of syngas-air mixtures in closed and half-open ducts</title><author>Yang, Xufeng ; Yu, Minggao ; Zheng, Kai ; Wan, Shaojie ; Wang, Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-ef96f60d6faca7fffe813f1b368d13cd173fdb03e9e455bee79610c04c1cbf953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cameras</topic><topic>Distortion</topic><topic>Downstream effects</topic><topic>Ducts</topic><topic>Flame propagation</topic><topic>Flame tip velocity</topic><topic>High speed cameras</topic><topic>Overpressure</topic><topic>Piezoelectric gages</topic><topic>Piezoelectricity</topic><topic>Premixed flame</topic><topic>Premixed flames</topic><topic>Pressure</topic><topic>Pressure waves</topic><topic>Propagation</topic><topic>Syngas</topic><topic>Synthesis gas</topic><topic>Tulip distortion</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Xufeng</creatorcontrib><creatorcontrib>Yu, Minggao</creatorcontrib><creatorcontrib>Zheng, Kai</creatorcontrib><creatorcontrib>Wan, Shaojie</creatorcontrib><creatorcontrib>Wang, Liang</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Xufeng</au><au>Yu, Minggao</au><au>Zheng, Kai</au><au>Wan, Shaojie</au><au>Wang, Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comparative investigation of premixed flame propagation behavior of syngas-air mixtures in closed and half-open ducts</atitle><jtitle>Energy (Oxford)</jtitle><date>2019-07-01</date><risdate>2019</risdate><volume>178</volume><spage>436</spage><epage>446</epage><pages>436-446</pages><issn>0360-5442</issn><eissn>1873-6785</eissn><abstract>A comparative investigation has been developed in conjunction with high-speed cameras and piezoelectric gauge to gain deep insight into the propagation behavior of premixed syngas-air flames. Experiments were carried out in two constant rectangular ducts, one closed duct (C-D) and one half-open duct (HO-D). One important finding is that the flame behavior in the C-D is different than that in the HO-D. The repeatable distorted tulip flame forms in the C-D while an unrepeatable distorted tulip shape forms in the HO-D. The repeated pressure-flame interactions result in a repetitive process of the tulip distortion. The downstream opening end of the duct has a significant influence on the flame propagation characteristics after the flame surface reaches the lateral walls. The opening end results in a higher maximum flame tip velocity, a lower overpressure and a longer plane formation time in the HO-D. Meanwhile, the position of the plane flame formation decreases as hydrogen fraction increases in the C-D while the opposite is true in the HO-D. Furthermore, the pressure build-up in both ducts are examined, and the maximum flame tip velocity is of importance for distorted tulip flame formation. •Premixed flame behavior of syngas-air mixtures is comparatively investigated.•The formation of the distorted tulip flame is specifically compared and discussed.•Flame tip and pressure dynamics are in close connection with flame structural change.•The time twall of the two ducts is the same while the time ttulip is different.•The sidewalls and the opening end can affect the flame propagation behavior.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2019.04.135</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5480-5857</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0360-5442
ispartof Energy (Oxford), 2019-07, Vol.178, p.436-446
issn 0360-5442
1873-6785
language eng
recordid cdi_proquest_journals_2251696020
source ScienceDirect Journals (5 years ago - present)
subjects Cameras
Distortion
Downstream effects
Ducts
Flame propagation
Flame tip velocity
High speed cameras
Overpressure
Piezoelectric gages
Piezoelectricity
Premixed flame
Premixed flames
Pressure
Pressure waves
Propagation
Syngas
Synthesis gas
Tulip distortion
Velocity
title A comparative investigation of premixed flame propagation behavior of syngas-air mixtures in closed and half-open ducts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A41%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comparative%20investigation%20of%20premixed%20flame%20propagation%20behavior%20of%20syngas-air%20mixtures%20in%20closed%20and%20half-open%20ducts&rft.jtitle=Energy%20(Oxford)&rft.au=Yang,%20Xufeng&rft.date=2019-07-01&rft.volume=178&rft.spage=436&rft.epage=446&rft.pages=436-446&rft.issn=0360-5442&rft.eissn=1873-6785&rft_id=info:doi/10.1016/j.energy.2019.04.135&rft_dat=%3Cproquest_cross%3E2251696020%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2251696020&rft_id=info:pmid/&rft_els_id=S0360544219307686&rfr_iscdi=true