A comparative investigation of premixed flame propagation behavior of syngas-air mixtures in closed and half-open ducts

A comparative investigation has been developed in conjunction with high-speed cameras and piezoelectric gauge to gain deep insight into the propagation behavior of premixed syngas-air flames. Experiments were carried out in two constant rectangular ducts, one closed duct (C-D) and one half-open duct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy (Oxford) 2019-07, Vol.178, p.436-446
Hauptverfasser: Yang, Xufeng, Yu, Minggao, Zheng, Kai, Wan, Shaojie, Wang, Liang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A comparative investigation has been developed in conjunction with high-speed cameras and piezoelectric gauge to gain deep insight into the propagation behavior of premixed syngas-air flames. Experiments were carried out in two constant rectangular ducts, one closed duct (C-D) and one half-open duct (HO-D). One important finding is that the flame behavior in the C-D is different than that in the HO-D. The repeatable distorted tulip flame forms in the C-D while an unrepeatable distorted tulip shape forms in the HO-D. The repeated pressure-flame interactions result in a repetitive process of the tulip distortion. The downstream opening end of the duct has a significant influence on the flame propagation characteristics after the flame surface reaches the lateral walls. The opening end results in a higher maximum flame tip velocity, a lower overpressure and a longer plane formation time in the HO-D. Meanwhile, the position of the plane flame formation decreases as hydrogen fraction increases in the C-D while the opposite is true in the HO-D. Furthermore, the pressure build-up in both ducts are examined, and the maximum flame tip velocity is of importance for distorted tulip flame formation. •Premixed flame behavior of syngas-air mixtures is comparatively investigated.•The formation of the distorted tulip flame is specifically compared and discussed.•Flame tip and pressure dynamics are in close connection with flame structural change.•The time twall of the two ducts is the same while the time ttulip is different.•The sidewalls and the opening end can affect the flame propagation behavior.
ISSN:0360-5442
1873-6785
DOI:10.1016/j.energy.2019.04.135