Gravitational self-force regularization in the Regge-Wheeler and easy gauges

We present numerical results for the gravitational self-force and redshift invariant calculated in the Regge-Wheeler and easy gauges for circular orbits in a Schwarzschild background, utilizing the regularization framework introduced by Pound, Merlin, and Barack. The numerical calculation is perform...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2019-06, Vol.99 (12), p.1, Article 124046
Hauptverfasser: Thompson, Jonathan E., Wardell, Barry, Whiting, Bernard F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present numerical results for the gravitational self-force and redshift invariant calculated in the Regge-Wheeler and easy gauges for circular orbits in a Schwarzschild background, utilizing the regularization framework introduced by Pound, Merlin, and Barack. The numerical calculation is performed in the frequency domain and requires the integration of a single second-order ordinary differential equation, greatly improving computation times over more traditional Lorenz gauge numerical methods. A sufficiently high-order, analytic expansion of the Detweiler-Whiting singular field is gauge transformed to both the Regge-Wheeler and easy gauges and used to construct tensor-harmonic mode-sum regularization parameters. We compare our results to the gravitational self-force calculated in the Lorenz gauge by explicitly gauge transforming the Lorenz gauge self-force to the Regge-Wheeler and easy gauges, and find that our results agree to a relative accuracy of 10−15 for an orbital radius of r0=6M and 10−16 for an orbital radius of r0=10M.
ISSN:2470-0010
2470-0029
DOI:10.1103/PhysRevD.99.124046