Top–Down Attention Is Limited Within but Not Between Feature Dimensions

In natural vision, processing of spatial and nonspatial features occurs simultaneously; however, the two types of attention in charge of facilitating this processing have distinct mechanisms. Here, we tested the independence of spatial and feature-based attention at different stages of visual proces...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cognitive neuroscience 2019-08, Vol.31 (8), p.1173-1183
Hauptverfasser: Adamian, Nika, Slaustaite, Elena, Andersen, Søren K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In natural vision, processing of spatial and nonspatial features occurs simultaneously; however, the two types of attention in charge of facilitating this processing have distinct mechanisms. Here, we tested the independence of spatial and feature-based attention at different stages of visual processing by examining color-based attentional selection while spatial attention was focused or divided. Human observers attended to one or two of four fields of randomly moving dots presented in both left and right visual hemifields. In the focused attention condition, the target stimulus was defined both by color and location, whereas in the divided attention condition stimuli of the target color had to be attended in both hemifields. Sustained attentional selection was measured by means of steady-state visual evoked potentials elicited by each of the frequency-tagged flickering dot fields. Additionally, target and distractor selection was assessed with ERPs to these stimuli. We found that spatial and color-based attention independently modulated the amplitude of steady-state visual evoked potentials, confirming independent top–down influences on early visual areas. In contrast, P3 amplitudes elicited only by targets and distractors of the attended color were subject to space-based enhancement, suggesting increasing integration of spatial and feature-based selection over the course of perceptual processing.
ISSN:0898-929X
1530-8898
DOI:10.1162/jocn_a_01383