An aggregate learning approach for interpretable semi-supervised population prediction and disaggregation using ancillary data

Census data provide detailed information about population characteristics at a coarse resolution. Nevertheless, fine-grained, high-resolution mappings of population counts are increasingly needed to characterize population dynamics and to assess the consequences of climate shocks, natural disasters,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-06
Hauptverfasser: Derval, Guillaume, Docquier, Frédéric, Schaus, Pierre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Census data provide detailed information about population characteristics at a coarse resolution. Nevertheless, fine-grained, high-resolution mappings of population counts are increasingly needed to characterize population dynamics and to assess the consequences of climate shocks, natural disasters, investments in infrastructure, development policies, etc. Dissagregating these census is a complex machine learning, and multiple solutions have been proposed in past research. We propose in this paper to view the problem in the context of the aggregate learning paradigm, where the output value for all training points is not known, but where it is only known for aggregates of the points (i.e. in this context, for regions of pixels where a census is available). We demonstrate with a very simple and interpretable model that this method is on par, and even outperforms on some metrics, the state-of-the-art, despite its simplicity.
ISSN:2331-8422