Supply- and Load-Modulated Balanced Amplifier for Efficient Broadband 5G Base Stations
This paper presents a broadband efficient power amplifier (PA) targeting sub-6-GHz 5G base station applications. Due to the demanding requirements in both peak-to-average power ratio (PAPR) and bandwidth in 5G systems, we employ a combination of both load and supply modulation for efficiency enhance...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on microwave theory and techniques 2019-07, Vol.67 (7), p.3122-3133 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents a broadband efficient power amplifier (PA) targeting sub-6-GHz 5G base station applications. Due to the demanding requirements in both peak-to-average power ratio (PAPR) and bandwidth in 5G systems, we employ a combination of both load and supply modulation for efficiency enhancement. Active matching, implemented using an RF-input load-modulated balanced amplifier (LMBA) architecture, enables efficient octave-bandwidth operation. Supply modulation, which is carrier frequency agnostic, is then used to further extend the back-off efficiency. This paper focuses on a study of supply modulation strategies for the load-modulated PA using an efficient GaN eight-level discrete supply modulator. To overcome the bandwidth limitations associated with discrete-level switching, a commutation rate reduction (CRR) filter is applied in digital baseband and its effects are analyzed theoretically and experimentally. The supply-modulated LMBA is characterized across 1.8-3.8 GHz with 100-MHz, 10-dB PAPR signals. An output power of 34 dBm with average composite (total) PAE ranging from 22.4% to 43.9% across the band is demonstrated, with an ACLR of about −50 dBc after digital predistortion. |
---|---|
ISSN: | 0018-9480 1557-9670 |
DOI: | 10.1109/TMTT.2019.2915082 |