Multispectral visual detection method for conveyor belt longitudinal tear

The flowchart of multispectral visual detection method [Display omitted] •Image acquisition sensor captures visible, mid-infrared and far infrared images.•Dual-thread image processing is adopted for the double fused images.•The method can identify longitudinal tear and other states of the conveyor b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Measurement : journal of the International Measurement Confederation 2019-09, Vol.143, p.246-257
Hauptverfasser: Hou, Chengcheng, Qiao, Tiezhu, Zhang, Haitao, Pang, Yusong, Xiong, Xiaoyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The flowchart of multispectral visual detection method [Display omitted] •Image acquisition sensor captures visible, mid-infrared and far infrared images.•Dual-thread image processing is adopted for the double fused images.•The method can identify longitudinal tear and other states of the conveyor belt. As an important part of modern coal mine production, conveyor belts are widely used in the coal collection and transportation. In order to ensure the safe operation of the coal mine conveyor belt and solve the drawbacks of the existing conveyor belt longitudinal tear detection technology, a multispectral visual detection method for conveyor belt longitudinal tear is proposed in this paper. The experimental results show that the multispectral visual detection method not only can identify the conveyor belt longitudinal tear, but also accurately classifies and identify other states of the conveyor belt. The accuracy of multispectral visual detection method is over 90.06%, and the precision of longitudinal tearing recognition is over 92.04%. The proposed method is verified to meet the requirements of reliability and real-time in the industrial field.
ISSN:0263-2241
1873-412X
DOI:10.1016/j.measurement.2019.05.010