Estimation of critical force and time required to control the kinematics and friction of rough ellipsoidal and cubic nanoparticles using mechanics of contact surfaces
In this paper, first, the control the kinematics of ellipsoidal and cubic nanoparticles is developed. Ellipsoidal and cubic contact theories are utilized for dynamics modeling. Moreover, sliding and rolling modes are considered in the substrate. Regarding surface roughness, existing roughness theori...
Gespeichert in:
Veröffentlicht in: | Tribology international 2019-09, Vol.137, p.11-21 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, first, the control the kinematics of ellipsoidal and cubic nanoparticles is developed. Ellipsoidal and cubic contact theories are utilized for dynamics modeling. Moreover, sliding and rolling modes are considered in the substrate. Regarding surface roughness, existing roughness theories are developed from two aspects of geometry and contact term. Considering the motion of cubic nanoparticles, at t = 0.21s, sliding occurs first and next, at t = 0.26s, rolling happens. In the case of ellipsoidal nanoparticles, these results are 0.11 and 0.22 s, respectively. Roughness results for both shapes of nanoparticles show that the general critical force and time of motion decrease with increasing number and complexity of asperities. In the end, in order to validate the results, a comparison between the developed models and existing experimental findings is performed.
•In the study of roughness, two factors of contact and adhesion are simultaneously affected.•The results of the manipulation of elliptic nanoparticles showed that it is the rolling mode which happens prior to the sliding mode during this motion.•The results of the manipulation of rough elliptic nanoparticles revealed that, similar to smooth elliptic nanoparticles, the rolling mode occurs before the sliding mode.•In rough elliptic models, two models of Prokopovich and Katainen which consider the surface asperities more than 1, yield the least amount of critical force and time.•The only difference in the results of the roughness simulation of cubic nanoparticles is related to two models Rumpf and Rabinovich in the sliding mode. |
---|---|
ISSN: | 0301-679X 1879-2464 |
DOI: | 10.1016/j.triboint.2019.04.026 |