Use of simulated ground motions for the evaluation of energy response of simple structural systems

The literature on energy-based seismic design and assessment methodologies of structural systems mostly relies on real ground motion datasets. However, certain bias exists due to lack of homogeneity in available ground motion datasets. In this study, a large set of ground motions is simulated. Next,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soil dynamics and earthquake engineering (1984) 2019-08, Vol.123, p.525-542
Hauptverfasser: Karimzadeh, Shaghayegh, Ozsarac, Volkan, Askan, Aysegul, Erberik, Murat Altug
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The literature on energy-based seismic design and assessment methodologies of structural systems mostly relies on real ground motion datasets. However, certain bias exists due to lack of homogeneity in available ground motion datasets. In this study, a large set of ground motions is simulated. Next, the effects of various parameters on seismic behavior of SDOF systems in terms of energy are studied using nonlinear time history analyses. The stochastic finite-fault simulations are performed on the western parts of North Anatolian Fault zone in Turkey. Input, damping and hysteretic energies are the considered parameters. Results reveal that seismic energy is a more suitable parameter when compared to the other physical parameters such as seismic displacement and force. However, it is important to dissipate the estimated input energy through damping and inelastic action. Finally, parametric seismic analyses using simulated ground motions yield realistic results since these records provide variability in seismic demand. •Energy response of SDOF systems is assessed with simulated ground motion records.•Regional seismic variability is introduced using stochastic finite-fault method.•Past event is used for validation of the simulated records in seismic energy.•Results are physically in line with previous studies using real records.•Energy-based approach with regional simulated records is promising.
ISSN:0267-7261
1879-341X
DOI:10.1016/j.soildyn.2019.05.024