Machine learning prediction of elastic properties and glass-forming ability of bulk metallic glasses

There is a genuine need to shorten the development period for new materials with desired properties. In this work, machine learning (ML) was conducted on a dataset of the elastic moduli of 219 bulk-metallic glasses (BMGs) and another dataset of the critical casting diameters (Dmax) of 442 BMGs. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:MRS communications 2019-06, Vol.9 (2), p.576-585
Hauptverfasser: Xiong, Jie, Zhang, Tong-Yi, Shi, San-Qiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:There is a genuine need to shorten the development period for new materials with desired properties. In this work, machine learning (ML) was conducted on a dataset of the elastic moduli of 219 bulk-metallic glasses (BMGs) and another dataset of the critical casting diameters (Dmax) of 442 BMGs. The resulting ML model predicted the moduli and Dmax of BMGs in good agreement with most experimentally measured values, and the model even identified some errors reported in the literature. This work indicates the great potential of ML in design of advanced materials with target properties.
ISSN:2159-6859
2159-6867
DOI:10.1557/mrc.2019.44