Hadamard partitioned difference families and their descendants

If D is a ( 4 u 2 , 2 u 2 − u , u 2 − u ) Hadamard difference set (HDS) in G , then { G , G ∖ D } is clearly a ( 4 u 2 , [ 2 u 2 − u , 2 u 2 + u ] , 2 u 2 ) partitioned difference family (PDF). Any ( v , K , λ ) -PDF will be said a Hadamard PDF if v = 2 λ as the one above. We present a doubling cons...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cryptography and communications 2019-07, Vol.11 (4), p.557-562
1. Verfasser: Buratti, Marco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:If D is a ( 4 u 2 , 2 u 2 − u , u 2 − u ) Hadamard difference set (HDS) in G , then { G , G ∖ D } is clearly a ( 4 u 2 , [ 2 u 2 − u , 2 u 2 + u ] , 2 u 2 ) partitioned difference family (PDF). Any ( v , K , λ ) -PDF will be said a Hadamard PDF if v = 2 λ as the one above. We present a doubling construction which, starting from any Hadamard PDF, leads to an infinite class of PDFs. As a special consequence, we get a PDF in a group of order 4 u 2 ( 2 n + 1 ) and three block-sizes 4 u 2 − 2 u , 4 u 2 and 4 u 2 + 2 u , whenever we have a ( 4 u 2 , 2 u 2 − u , u 2 − u ) -HDS and the maximal prime power divisors of 2 n + 1 are all greater than 4 u 2 + 2 u .
ISSN:1936-2447
1936-2455
DOI:10.1007/s12095-018-0308-3