Comparison of microstructure, mechanical properties, and residual stresses in tungsten inert gas, laser, and electron beam welding of Ti–5Al–2.5Sn titanium alloy

Electron beam welding (EBW), pulsed Nd:YAG laser beam welding (P-LBW), and pulsed tungsten inert gas (P-TIG) welding of Ti–5Al–2.5Sn alloy were performed in order to prepare full penetration weldments. Owing to relatively high power density of EBW and LBW, the fusion zone width of EBW weldment was a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part L, Journal of materials, design and applications Journal of materials, design and applications, 2019-07, Vol.233 (7), p.1336-1351
Hauptverfasser: Junaid, Massab, Rahman, Khalid, Khan, Fahd Nawaz, Bakhsh, Nabi, Baig, Mirza Nadeem
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Electron beam welding (EBW), pulsed Nd:YAG laser beam welding (P-LBW), and pulsed tungsten inert gas (P-TIG) welding of Ti–5Al–2.5Sn alloy were performed in order to prepare full penetration weldments. Owing to relatively high power density of EBW and LBW, the fusion zone width of EBW weldment was approximately equal to P-LBW weldment. The absence of shielding gas due to vacuum environment in EBW was beneficial to the joint quality (low oxide contents). However, less cooling rates were achieved compared to P-LBW as an increase in heat-affected zone width and partial α′ martensitic transformation in fusion zone were observed in EBW weldments. The microstructure in fusion zone in both the EBW and P-TIG weldments comprised of both acicular α and α′ martensite within the prior β grains. Hardness of the fusion zone in EBW was higher than the fusion zone of P-TIG but less than the fusion zone of P-LBW weldments due to the observed microstructural differences. Notch tensile specimen of P-LBW showed higher load capacity, ductility and absorbed energy as compared to P-TIG and EBW specimens due to the presence of high strength α′ martensite phase. Maximum sheet distortions and tensile residual stresses were observed in P-TIG weldments due to high overall heat input. The lowest residual stresses were found in P-LBW weldments, which were tensile in nature. This was owing to high power density and higher cooling rates in P-LBW operation. EBW weldment exhibited the highest compressive residual stresses due to which the service life of EBW weldment is expected to improve.
ISSN:1464-4207
2041-3076
DOI:10.1177/1464420717748345