RILEM TC 252-CMB report: rheological modeling of asphalt binder under different short and long-term aging temperatures
This paper evaluates whether the temperature reduction production during Warm-Mix Asphalt (WMA) leads to a beneficial effect on short- and long-term aging properties of asphalt binder. For this purpose, two 70/100 penetration grade virgin asphalt binders were used. First, the material was short term...
Gespeichert in:
Veröffentlicht in: | Materials and structures 2019-08, Vol.52 (4), Article 73 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper evaluates whether the temperature reduction production during Warm-Mix Asphalt (WMA) leads to a beneficial effect on short- and long-term aging properties of asphalt binder. For this purpose, two 70/100 penetration grade virgin asphalt binders were used. First, the material was short term aged at three different temperature, 123 °C, 143 °C, and 163 °C, and then, long term aged. Shear complex modulus was then measured with the Dynamic Shear Rheometer and the data used to generate master curves and fit the 2 Spring 2 Parabolic 1 Dashpot model. Glover–Rowe parameter and crossover-temperature were next determined to further investigate the effect of aging temperature on the properties of the material. Significant differences were observed between 163 and 123 °C for both short- and long-term aging conditions. However, a remarkable difference between 143 and 123 °C could be detected only for the short-term aged binder. Finally, the statistical analysis confirmed the experimentally observed trend. Based on the results and analysis presented in this paper, it can be hypothesized that a reduction in the temperature of short-term aging, which is commonly experienced during WMA production, may result in an overall substantially milder aging. |
---|---|
ISSN: | 1359-5997 1871-6873 |
DOI: | 10.1617/s11527-019-1371-8 |