Empirical Measures and Quantum Mechanics: Applications to the Mean-Field Limit

In this paper, we define a quantum analogue of the notion of empirical measure in the classical mechanics of N -particle systems. We establish an equation governing the evolution of our quantum analogue of the N -particle empirical measure, and we prove that this equation contains the Hartree equati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2019-08, Vol.369 (3), p.1021-1053
Hauptverfasser: Golse, François, Paul, Thierry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1053
container_issue 3
container_start_page 1021
container_title Communications in mathematical physics
container_volume 369
creator Golse, François
Paul, Thierry
description In this paper, we define a quantum analogue of the notion of empirical measure in the classical mechanics of N -particle systems. We establish an equation governing the evolution of our quantum analogue of the N -particle empirical measure, and we prove that this equation contains the Hartree equation as a special case. Applications to the mean-field limit of the N -particle Schrödinger equation include an O ( 1 / N ) convergence rate in some appropriate dual Sobolev norm for the Wigner transform of the single-particle marginal of the N -particle density operator, uniform in ħ ∈ ( 0 , 1 ] provided that V and ( - Δ ) 3 / 2 + d / 4 V have integrable Fourier transforms.
doi_str_mv 10.1007/s00220-019-03357-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2249088027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2249088027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-c31cd0f8c7b1e73be5f246d76d88090a085b36b351e772c2245c689a01f0a9463</originalsourceid><addsrcrecordid>eNp9kEFLwzAYhoMoOKd_wFPBc_RL0iattzG2KUxF0HNI09RltGlN2oP79WZW8OblC3x53veDB6FrArcEQNwFAEoBAykwMJYJfDhBM5IyiqEg_BTNAAhgxgk_Rxch7AGgoJzP0POq7a23WjXJk1Fh9CYkylXJ66jcMLZxqXfKWR3uk0XfNxEcbOdCMnTJsDPHjMNra5oq2drWDpforFZNMFe_7xy9r1dvywe8fdk8LhdbrBlnQ5xEV1DnWpTECFaarKYprwSv8hwKUJBnJeMly-KvoJrSNNM8LxSQGlSRcjZHN1Nv77vP0YRB7rvRu3hSRriAWENFpOhEad-F4E0te29b5b8kAXn0JidvMnqTP97kIYbYFAoRdh_G_1X_k_oGK4xvew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2249088027</pqid></control><display><type>article</type><title>Empirical Measures and Quantum Mechanics: Applications to the Mean-Field Limit</title><source>SpringerLink Journals</source><creator>Golse, François ; Paul, Thierry</creator><creatorcontrib>Golse, François ; Paul, Thierry</creatorcontrib><description>In this paper, we define a quantum analogue of the notion of empirical measure in the classical mechanics of N -particle systems. We establish an equation governing the evolution of our quantum analogue of the N -particle empirical measure, and we prove that this equation contains the Hartree equation as a special case. Applications to the mean-field limit of the N -particle Schrödinger equation include an O ( 1 / N ) convergence rate in some appropriate dual Sobolev norm for the Wigner transform of the single-particle marginal of the N -particle density operator, uniform in ħ ∈ ( 0 , 1 ] provided that V and ( - Δ ) 3 / 2 + d / 4 V have integrable Fourier transforms.</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-019-03357-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Quantum Gravitation ; Classical mechanics ; Complex Systems ; Empirical equations ; Fourier transforms ; Mathematical and Computational Physics ; Mathematical Physics ; Particle density (concentration) ; Physics ; Physics and Astronomy ; Quantum mechanics ; Quantum Physics ; Relativity Theory ; Schrodinger equation ; Theoretical</subject><ispartof>Communications in mathematical physics, 2019-08, Vol.369 (3), p.1021-1053</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-c31cd0f8c7b1e73be5f246d76d88090a085b36b351e772c2245c689a01f0a9463</citedby><cites>FETCH-LOGICAL-c363t-c31cd0f8c7b1e73be5f246d76d88090a085b36b351e772c2245c689a01f0a9463</cites><orcidid>0000-0002-7715-6682</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00220-019-03357-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00220-019-03357-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Golse, François</creatorcontrib><creatorcontrib>Paul, Thierry</creatorcontrib><title>Empirical Measures and Quantum Mechanics: Applications to the Mean-Field Limit</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>In this paper, we define a quantum analogue of the notion of empirical measure in the classical mechanics of N -particle systems. We establish an equation governing the evolution of our quantum analogue of the N -particle empirical measure, and we prove that this equation contains the Hartree equation as a special case. Applications to the mean-field limit of the N -particle Schrödinger equation include an O ( 1 / N ) convergence rate in some appropriate dual Sobolev norm for the Wigner transform of the single-particle marginal of the N -particle density operator, uniform in ħ ∈ ( 0 , 1 ] provided that V and ( - Δ ) 3 / 2 + d / 4 V have integrable Fourier transforms.</description><subject>Classical and Quantum Gravitation</subject><subject>Classical mechanics</subject><subject>Complex Systems</subject><subject>Empirical equations</subject><subject>Fourier transforms</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Particle density (concentration)</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum mechanics</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Schrodinger equation</subject><subject>Theoretical</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLwzAYhoMoOKd_wFPBc_RL0iattzG2KUxF0HNI09RltGlN2oP79WZW8OblC3x53veDB6FrArcEQNwFAEoBAykwMJYJfDhBM5IyiqEg_BTNAAhgxgk_Rxch7AGgoJzP0POq7a23WjXJk1Fh9CYkylXJ66jcMLZxqXfKWR3uk0XfNxEcbOdCMnTJsDPHjMNra5oq2drWDpforFZNMFe_7xy9r1dvywe8fdk8LhdbrBlnQ5xEV1DnWpTECFaarKYprwSv8hwKUJBnJeMly-KvoJrSNNM8LxSQGlSRcjZHN1Nv77vP0YRB7rvRu3hSRriAWENFpOhEad-F4E0te29b5b8kAXn0JidvMnqTP97kIYbYFAoRdh_G_1X_k_oGK4xvew</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Golse, François</creator><creator>Paul, Thierry</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7715-6682</orcidid></search><sort><creationdate>20190801</creationdate><title>Empirical Measures and Quantum Mechanics: Applications to the Mean-Field Limit</title><author>Golse, François ; Paul, Thierry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-c31cd0f8c7b1e73be5f246d76d88090a085b36b351e772c2245c689a01f0a9463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Classical mechanics</topic><topic>Complex Systems</topic><topic>Empirical equations</topic><topic>Fourier transforms</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Particle density (concentration)</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum mechanics</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Schrodinger equation</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Golse, François</creatorcontrib><creatorcontrib>Paul, Thierry</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Golse, François</au><au>Paul, Thierry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Empirical Measures and Quantum Mechanics: Applications to the Mean-Field Limit</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2019-08-01</date><risdate>2019</risdate><volume>369</volume><issue>3</issue><spage>1021</spage><epage>1053</epage><pages>1021-1053</pages><issn>0010-3616</issn><eissn>1432-0916</eissn><abstract>In this paper, we define a quantum analogue of the notion of empirical measure in the classical mechanics of N -particle systems. We establish an equation governing the evolution of our quantum analogue of the N -particle empirical measure, and we prove that this equation contains the Hartree equation as a special case. Applications to the mean-field limit of the N -particle Schrödinger equation include an O ( 1 / N ) convergence rate in some appropriate dual Sobolev norm for the Wigner transform of the single-particle marginal of the N -particle density operator, uniform in ħ ∈ ( 0 , 1 ] provided that V and ( - Δ ) 3 / 2 + d / 4 V have integrable Fourier transforms.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00220-019-03357-z</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0002-7715-6682</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-3616
ispartof Communications in mathematical physics, 2019-08, Vol.369 (3), p.1021-1053
issn 0010-3616
1432-0916
language eng
recordid cdi_proquest_journals_2249088027
source SpringerLink Journals
subjects Classical and Quantum Gravitation
Classical mechanics
Complex Systems
Empirical equations
Fourier transforms
Mathematical and Computational Physics
Mathematical Physics
Particle density (concentration)
Physics
Physics and Astronomy
Quantum mechanics
Quantum Physics
Relativity Theory
Schrodinger equation
Theoretical
title Empirical Measures and Quantum Mechanics: Applications to the Mean-Field Limit
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T08%3A56%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Empirical%20Measures%20and%20Quantum%20Mechanics:%20Applications%20to%20the%20Mean-Field%20Limit&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=Golse,%20Fran%C3%A7ois&rft.date=2019-08-01&rft.volume=369&rft.issue=3&rft.spage=1021&rft.epage=1053&rft.pages=1021-1053&rft.issn=0010-3616&rft.eissn=1432-0916&rft_id=info:doi/10.1007/s00220-019-03357-z&rft_dat=%3Cproquest_cross%3E2249088027%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2249088027&rft_id=info:pmid/&rfr_iscdi=true