Empirical Measures and Quantum Mechanics: Applications to the Mean-Field Limit
In this paper, we define a quantum analogue of the notion of empirical measure in the classical mechanics of N -particle systems. We establish an equation governing the evolution of our quantum analogue of the N -particle empirical measure, and we prove that this equation contains the Hartree equati...
Gespeichert in:
Veröffentlicht in: | Communications in mathematical physics 2019-08, Vol.369 (3), p.1021-1053 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we define a quantum analogue of the notion of empirical measure in the classical mechanics of
N
-particle systems. We establish an equation governing the evolution of our quantum analogue of the
N
-particle empirical measure, and we prove that this equation contains the Hartree equation as a special case. Applications to the mean-field limit of the
N
-particle Schrödinger equation include an
O
(
1
/
N
)
convergence rate in some appropriate dual Sobolev norm for the Wigner transform of the single-particle marginal of the
N
-particle density operator, uniform in
ħ
∈
(
0
,
1
]
provided that
V
and
(
-
Δ
)
3
/
2
+
d
/
4
V
have integrable Fourier transforms. |
---|---|
ISSN: | 0010-3616 1432-0916 |
DOI: | 10.1007/s00220-019-03357-z |