Empirical Measures and Quantum Mechanics: Applications to the Mean-Field Limit

In this paper, we define a quantum analogue of the notion of empirical measure in the classical mechanics of N -particle systems. We establish an equation governing the evolution of our quantum analogue of the N -particle empirical measure, and we prove that this equation contains the Hartree equati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2019-08, Vol.369 (3), p.1021-1053
Hauptverfasser: Golse, François, Paul, Thierry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we define a quantum analogue of the notion of empirical measure in the classical mechanics of N -particle systems. We establish an equation governing the evolution of our quantum analogue of the N -particle empirical measure, and we prove that this equation contains the Hartree equation as a special case. Applications to the mean-field limit of the N -particle Schrödinger equation include an O ( 1 / N ) convergence rate in some appropriate dual Sobolev norm for the Wigner transform of the single-particle marginal of the N -particle density operator, uniform in ħ ∈ ( 0 , 1 ] provided that V and ( - Δ ) 3 / 2 + d / 4 V have integrable Fourier transforms.
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-019-03357-z